精英家教网 > 高中数学 > 题目详情
设随机变量X的分布列为P(X=k)=pk(1-p)1-k(k=0.1,0<p<1),则E(X)=________.
1-p
X服从两点分布,∴E(X)=1-p.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

“蛟龙号”从海底中带回的某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.
(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;
(3)若甲乙两小组各进行2次试验,设试验成功的总次数为,求的期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 某售货员负责在甲、乙、丙三个柜面上售货.如果在某一小时内各柜面不需要售货员照顾的概率分别为0.9,0.8,0.7.假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内:
(1)只有丙柜面需要售货员照顾的概率;
(2)三个柜面最多有一个需要售货员照顾的概率;
(3)三个柜面至少有一个需要售货员照顾的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是2/3,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.
(1)求这支篮球队首次胜场前已经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好胜了3场的概率;
(3)求这支篮球队在6场比赛中胜场数的期望和方差.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

甲、乙两人进行乒乓球比赛,采用“五局三胜制”,即五局中先胜三局为赢,若每场比赛甲获胜的概率是,乙获胜的概率是,则比赛以甲三胜一负而结束的概率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下面随机变量X的分布列不属于二项分布的是________.
①据中央电视台新闻联播报道,下周内在某网站下载一次数据,电脑被感染某种病毒的概率是0.65.设在这一周内,某电脑从该网站下载数据n次中被感染这种病毒的次数为X;②某射手射击击中目标的概率为p,设每次射击是相互独立的,从开始射击到击中目标所需要的射击次数为X;③某射手射击击中目标的概率为p,设每次射击是相互独立的,射击n次命中目标的次数为X;④位于某汽车站附近有一个加油站,汽车每次出站后到这个加油站加油的概率为0.6,国庆节这一天有50辆汽车开出该站,假设一天里汽车去该加油站加油是相互独立的,去该加油站加油的汽车数为X.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列说法:
① 设有一批产品,其次品率为0.05,则从中任取200件,必有10件次品;
②抛100次硬币的试验,有51次出现正面.因此出现正面的概率是0.51;
③抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是
④抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大
⑤有10个阄,其中一个代表奖品,10个人按顺序依次抓阄来决定奖品的归属,则摸奖的顺序对中奖率没有影响。
其中正确的有_____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
假定某人每次射击命中目标的概率均为,现在连续射击3次。
(1) 求此人至少命中目标2次的概率;
(2) 若此人前3次射击都没有命中目标,再补射一次后结束射击;否则。射击结束。记此人射击结束时命中目标的次数为X,求X的数学期望。

查看答案和解析>>

同步练习册答案