精英家教网 > 高中数学 > 题目详情
6.设抛物线$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p>0)的焦点为F(1,0),过F的直线与抛物线交于A,B两点,且满足|AF|=3|BF|,则弦AB的中点到准线的距离为$\frac{8}{3}$.

分析 设|BF|=m,由抛物线的定义知AA1和BB1,进而可推断出AC和AB,及直线AB的斜率,则直线AB的方程可得,与抛物线方程联立消去y,进而跟韦达定理求得x1+x2的值,则根据抛物线的定义求得弦AB的中点到准线的距离.

解答 解:抛物线$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p>0)的焦点为F(1,0),普通方程为y2=4x,
设|BF|=m,由抛物线的定义知
|AA1|=3m,|BB1|=m
∴△ABC中,|AC|=2m,|AB|=4m,kAB=$\sqrt{3}$
直线AB方程为y=$\sqrt{3}$(x-1)
与抛物线方程联立消y得3x2-10x+3=0
所以AB中点到准线距离为$\frac{5}{3}$+1=$\frac{8}{3}$.
故答案为:$\frac{8}{3}$

点评 本题主要考查了抛物线的简单性质.考查了直线与抛物线的关系及焦点弦的问题.常需要利用抛物线的定义来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在极坐标系中,曲线C:ρ=2cosθ,l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$.
(1)求曲线C和直线l的直角坐标方程;
(2)O为极点,A,B为曲线C上的两点,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=(x2-ax+a+1)ex(a∈N)在区间(1,3)只有1个极值点,则曲线f(x)在点(0,f(0))处切线的方程为x-y+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.用秦九韶算法计算函数f(x)=2x5-3x3+2x2+x-3的值,若x=2,则V3的值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0))的渐近线与圆(x-3)2-y2=4相切,且双曲线以该圆的圆心为焦点,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{25}$=1D.$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{1}{2}$,F1,F2分别为左右焦点,B1为短轴的一个端点,△B1F1F2的面积为$\sqrt{3}$
(Ⅰ)求椭圆E的方程
(Ⅱ)若A,B,C,D是椭圆上异于顶点且不重合的四个点,AC于BD相交于点F1,且$\overrightarrow{AC}•\overrightarrow{BD}$=0,求$\frac{|AC|}{|BD|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x>0}\\{1-|2x+1|,x≤0}\end{array}\right.$,若关于x的方程f(x)=kx-1有两个不相等的实数根,则实数k的取值范围为{k|k≥2或k=1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cosωx(ω>0),其图象上相邻的两条对称轴之间的距离为$\frac{π}{2}$,
(Ⅰ)求f(x+$\frac{π}{6}$)在区间[-$\frac{π}{6}$,$\frac{2π}{3}$]上的单调区间;
(Ⅱ)若α∈($\frac{5π}{12}$,$\frac{π}{2}$),f(α+$\frac{π}{3}$)=$\frac{1}{3}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=$\left\{\begin{array}{l}{-4{x}^{2},x<0}\\{{x}^{2}-x,x≥0}\end{array}\right.$,若f(a)=-$\frac{1}{4}$,则a=$\frac{1}{4}$或$\frac{1}{2}$,若方程f(x)-b=0有三个不同的实根,则实数b的取值范围是(-$\frac{1}{4}$,0).

查看答案和解析>>

同步练习册答案