【题目】已知函数,,其中,设.
(1)判断的奇偶性,并说明理由;
(2)若,求使成立的x的集合
【答案】(1)奇函数;(2){x|0<x<1}
【解析】
(1)依题意得1+x>0,1-x>0,
∴函数h(x)的定义域为(-1,1).
∵对任意的x∈(-1,1),-x∈(-1,1),
h(-x)=f(-x)-g(-x)
=loga(1-x)-loga(1+x)
=g(x)-f(x)=-h(x),
∴h(x)是奇函数.
(2)由f(3)=2,得a=2.
此时h(x)=log2(1+x)-log2(1-x),
由h(x)>0即log2(1+x)-log2(1-x)>0,
∴log2(1+x)>log2(1-x).
由1+x>1-x>0,解得0<x<1.
故使h(x)>0成立的x的集合是{x|0<x<1}.
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为4,离心率为.
(1)求椭圆的标准方程;
(2)过右焦点的直线交椭圆于两点,过点作直线的垂线,垂足为,连接,当直线的倾斜角发生变化时,直线与轴是否相交于定点?若是,求出定点坐标,否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m,n是两条不同直线,,,是三个不同平面,给出下列四个命题:①若m⊥,n⊥,则m//n;②若//,//,m⊥,则m⊥;③若m//,n//,则m//n;④⊥,⊥,则//.其中正确命题的序号是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】销售甲、乙两种商品所得利润分别是万元,它们与投入资金 万元的关系分别为,,(其中都为常数),函数对应的曲线、如图所示.
(1)求函数与的解析式;
(2)若该商场一共投资4万元经销甲、乙两种商品,求该商场所获利润的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在底面是边长为6的正方形的四棱锥P--ABCD中,点P在底面的射影H为正方形ABCD的中心,异面直线PB与AD所成角的正切值为,则四棱锥P--ABCD的内切球与外接球的半径之比为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知小明(如图中所示)身高米,路灯高米, , 均垂直于水平地面,分别与地面交于点, .点光源从发出,小明在地上的影子记作.
(1)小明沿着圆心为,半径为米的圆周在地面上走一圈,求扫过的图形面积;
(2)若米,小明从出发,以米/秒的速度沿线段走到, ,且米. 秒时,小明在地面上的影子长度记为(单位:米),求的表达式与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程.以极点为原点,极轴为轴非负半轴建立平面直角坐标系,且在两坐标系中取相同的长度单位,直线的参数方程为(为参数).
(1)写出曲线的参数方程和直线的普通方程;
(2)过曲线上任意一点作与直线相交的直线,该直线与直线所成的锐角为,设交点为,求的最大值和最小值,并求出取得最大值和最小值时点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com