¾«Ó¢¼Ò½ÌÍøÉèÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬É϶¥µãΪA£¬¹ýµãAÓëAF2´¹Ö±µÄÖ±Ïß½»xÖḺ°ëÖáÓÚµãQ£¬ÇÒ2
F1F2
+
F2Q
=
0
£®
£¨1£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨2£©Èô¹ýA¡¢Q¡¢F2ÈýµãµÄԲǡºÃÓëÖ±Ïßl£ºx-
3
y-3=0
ÏàÇУ¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ýÓÒ½¹µãF2×÷бÂÊΪkµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©Ê¹µÃÒÔPM£¬PNΪÁڱߵÄƽÐÐËıßÐÎÊÇÁâÐΣ¬Èç¹û´æÔÚ£¬Çó³ömµÄÈ¡Öµ·¶Î§£¬Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£®
·ÖÎö£º£¨1£©ÉèQ£¨x0£¬0£©£¬ÓÉF2£¨c£¬0£©£¬A£¨0£¬b£©½áºÏÏòÁ¿Ìõ¼þ¼°ÏòÁ¿ÔËËãµÃ³ö¹ØÓÚa£¬cµÄµÈʽ£¬´Ó¶øÇóµÃÍÖÔ²µÄÀëÐÄÂʼ´¿É£»
£¨2£©ÓÉ£¨1£©Öªa£¬cµÄÒ»¸ö·½³Ì£¬ÔÙÀûÓá÷AQFµÄÍâ½ÓÔ²µÃ³öÁíÒ»¸ö·½³Ì£¬½âÕâÁ½¸ö·½³Ì×é³ÉµÄ·½³Ì×é¼´¿ÉÇóµÃËùÇóÍÖÔ²·½³Ì£»
£¨3£©ÓÉ£¨¢ò£©ÖªÖ±Ïßl£ºy=k£¨x-1£©£¬½«Ö±Ïߵķ½³Ì´úÈëÍÖÔ²µÄ·½³Ì£¬ÏûÈ¥yµÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÔÙ½áºÏ¸ùϵÊýµÄ¹ØϵÀûÓÃÏÒ³¤¹«Ê½¼´¿ÉÇóµÃÂú×ãÌâÒâµÄµãPÇÒmµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©ÉèQ£¨x0£¬0£©£¬ÓÉF2£¨c£¬0£©£¬A£¨0£¬b£©
Öª
F2A
=(-c£¬b)£¬
AQ
=(x0£¬-b)

¡ß
F2A
¡Í
AQ
£¬¡à-cx0-b2=0£¬x0=-
b2
c
£¬
ÓÉÓÚ2
F1F2
+
F2Q
=
0
¼´F1ΪF2QÖе㣮
¹Ê-
b2
c
+c=-2c
¡àb2=3c2=a2-c2£¬
¹ÊÍÖÔ²µÄÀëÐÄÂÊe=
1
2
£¬£¨3·Ö£©
£¨2£©ÓÉ£¨1£©Öª
c
a
=
1
2
£¬µÃc=
1
2
a
ÓÚÊÇF2£¨
1
2
a£¬0£©Q(-
3
2
a£¬0)
£¬
¡÷AQFµÄÍâ½ÓÔ²Ô²ÐÄΪ£¨-
1
2
a£¬0£©£¬°ë¾¶r=
1
2
|FQ|=a
ËùÒÔ
|-
1
2
a-3|
2
=a
£¬½âµÃa=2£¬¡àc=1£¬b=
3
£¬
ËùÇóÍÖÔ²·½³ÌΪ
x2
4
+
y2
3
=1
£¬£¨6·Ö£©
£¨3£©ÓÉ£¨¢ò£©ÖªF2£¨1£¬0£©l£ºy=k£¨x-1£©
y=k(x-1)
x2
4
+
y2
3
=1

´úÈëµÃ£¨3+4k2£©x2-8k2x+4k2-12=0
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©
Ôòx1+x2=
8k2
3+4k2
£¬y1+y2=k£¨x1+x2-2£©£¬£¨8·Ö£©
PM
+
PN
=(x1-m£¬y1)+(x2-m£¬y2)
=£¨x1+x2-2m£¬y1+y2£©
ÓÉÓÚÁâÐζԽÇÏß´¹Ö±£¬Ôò(
PM
+
PN
)•
MN
=0

¹Êk£¨y1+y2£©+x1+x2-2m=0
Ôòk2£¨x1+x2-2£©+x1+x2-2m=0k2(
8k2
3+4k2
-2)
+
8k2
3+4k2
-2m=0
£¨10·Ö£©
ÓÉÒÑÖªÌõ¼þÖªk¡Ù0ÇÒk¡ÊR¡àm=
k2
3+4k2
=
1
3
k2
+4
¡à0£¼m£¼
1
4

¹Ê´æÔÚÂú×ãÌâÒâµÄµãPÇÒmµÄÈ¡Öµ·¶Î§ÊÇ0£¼m£¼
1
4
£®£¨12·Ö£©
µãÆÀ£ºµ±Ö±ÏßÓëԲ׶ÇúÏßÏཻʱ   Éæ¼°ÏÒ³¤ÎÊÌ⣬³£Óá°Î¤´ï¶¨Àí·¨¡±Éè¶ø²»Çó¼ÆËãÏÒ³¤£¨¼´Ó¦ÓÃÏÒ³¤¹«Ê½£©£»Éæ¼°ÏÒ³¤µÄÖеãÎÊÌ⣬³£Óá°µã²î·¨¡±Éè¶ø²»Ç󣬽«ÏÒËùÔÚÖ±ÏßµÄбÂÊ¡¢ÏÒµÄÖеã×ø±êÁªÏµÆðÀ´£¬Ï໥ת»¯   ͬʱ»¹Ó¦³ä·ÖÍÚ¾òÌâÄ¿µÄÒþº¬Ìõ¼þ£¬Ñ°ÕÒÁ¿ÓëÁ¿¼äµÄ¹ØϵÁé»îת»¯£¬ÍùÍù¾ÍÄÜÊ°빦±¶£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾1£©ÓÒ½¹µãΪF£¬ËüÓëÖ±Ïßl£ºy=k£¨x+1£©ÏཻÓÚP¡¢QÁ½µã£¬lÓëxÖáµÄ½»µãMµ½ÍÖÔ²×ó×¼ÏߵľàÀëΪd£¬ÈôÍÖÔ²µÄ½¹¾àÊÇbÓëd+|MF|µÄµÈ²îÖÐÏ
£¨1£©ÇóÍÖÔ²ÀëÐÄÂÊe£»
£¨2£©ÉèNÓëM¹ØÓÚÔ­µãO¶Ô³Æ£¬ÈôÒÔNΪԲÐÄ£¬bΪ°ë¾¶µÄÔ²ÓëlÏàÇУ¬ÇÒ
OP
OQ
=-
5
3
ÇóÍÖÔ²CµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÉèÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó£®ÓÒ½¹µã·Ö±ðΪF1F2£¬É϶¥µãΪA£¬¹ýµãAÓëAF2´¹Ö±µÄÖ±Ïß½»xÖḺ°ëÖáÓÚµãQ£¬ÇÒ2
F1F2
+
F2Q
=
0
£®
£¨1£©Èô¹ýA£®Q£®F2ÈýµãµÄԲǡºÃÓëÖ±Ïßl£ºx-
3
y-3=0ÏàÇУ¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬¹ýÓÒ½¹µãF2×÷бÂÊΪkµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚM£®NÁ½µã£®ÊÔÖ¤Ã÷£º
1
|F2M|
+
1
|F2N|
Ϊ¶¨Öµ£»¢ÚÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©Ê¹µÃÒÔPM£¬PNΪÁڱߵÄƽÐÐËıßÐÎÊÇÁâÐΣ¬Èç¹û´æÔÚ£¬Çó³ömµÄÈ¡Öµ·¶Î§£¬Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÑγÇһģ£©ÉèÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
ºã¹ý¶¨µãA£¨1£¬2£©£¬ÔòÍÖÔ²µÄÖÐÐĵ½×¼ÏߵľàÀëµÄ×îСֵ
5
+2
5
+2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÈôP ÊÇÍÖÔ²ÉϵÄÒ»µã£¬|
PF1
|+|
PF2
|=4
£¬ÀëÐÄÂÊe=
3
2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôP ÊǵÚÒ»ÏóÏÞÄÚ¸ÃÍÖÔ²ÉϵÄÒ»µã£¬
PF1
PF2
=-
5
4
£¬ÇóµãPµÄ×ø±ê£»
£¨3£©Éè¹ý¶¨µãP£¨0£¬2£©µÄÖ±ÏßÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÇÒ¡ÏAOBΪÈñ½Ç£¨ÆäÖÐOΪ×ø±êÔ­µã£©£¬ÇóÖ±ÏßlµÄбÂÊkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó£¬ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊΪe=
2
2
£¬ÒÔF1ΪԲÐÄ£¬|F1F2|Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïßx-
3
y-3=0
ÏàÇУ®
£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨II£©Ö±Ïßy=x½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬DΪÍÖÔ²ÉÏÒìÓÚA¡¢BµÄµã£¬Çó¡÷ABDÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸