精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥S—ABCD中,∠SDA=2∠SAD=90°,∠BAD+∠ADC=180°,AB=CD,点F是线段

SA上靠近点A的一个三等分点,AC与BD相交于E.

(1)在线段SB上作出点G,使得平面EFG∥平面SCD,请指明点G的具体位置,并用阴影部分表示平面EFG,不必说明平面EFG∥平面SCD的理由;

(2)若SA=SB=2,AB=AD=BD=,求点F到平面SCD的距离.

【答案】(1)G为线段SB上靠近B点的三等分点,作图见解析;(2).

【解析】

(1)作出平面的图形如图,点G为线段SB上靠近B点的三等分点;(2)利用勾股定理得结合可证明平面,可得平面平面由此平面即为到平面的距离边上的高为,则,所以.

(1)作出平面的图形如下所示,点G为线段SB上靠近B点的三等分点.

(2)依题意, 因为,故

则有

所以

又因为

所以

因为平面

所以平面

如图

因为平面

所以平面

又因为

所以即为到平面的距离.

中,设边上的高为,则

因为

所以

到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxna1+a2+…+a99的值为(  )

A. 1 B. 2 C. -2 D. -1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了纪念“一带一路”倡议提出五周年,某城市举办了一场知识竞赛,为了了解市民对“一带一路”知识的掌握情况,从回收的有效答卷中按青年组和老年组各随机抽取了40份答卷,发现成绩都在内,现将成绩按区间,,,进行分组,绘制成如下的频率分布直方图.

青年组

中老年组

(1)利用直方图估计青年组的中位数和老年组的平均数;

(2)从青年组,的分数段中,按分层抽样的方法随机抽取5份答卷,再从中选出3份答卷对应的市民参加政府组织的座谈会,求选出的3位市民中有2位来自分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象相邻两条对称轴的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称则函数的图象( )

A. 关于直线对称 B. 关于直线对称

C. 关于点对称 D. 关于点对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王投资1万元2万元、3万元获得的收益分别是4万元、9万元、16万元为了预测投资资金x(万元)与收益y万元)之间的关系,小王选择了甲模型和乙模型.

1)根据小王选择的甲、乙两个模型,求实数a,b,c,p,q,r的值

2)若小王投资4万元,获得收益是25.2万元,请问选择哪个模型较好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中, .

(Ⅰ)求的值;

(Ⅱ)若的角平分线,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的极值;

(Ⅱ)求证:当时,存在,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 命题,则”的逆否命题为真命题;

B. 命题“”为假命题,则命题与命题都是假命题

C. 成立的必要不充分条件;

D. 命题存在,使得”的否定是:“对任意,均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)求的单调区间;

3)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

同步练习册答案