精英家教网 > 高中数学 > 题目详情
.某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P—EFGH,下半部分是长方体ABCD—EFGH,图5、图6分别是该标识墩的正(主)视图和俯视图。
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积;
(3)证明:直线BD⊥平面PEG
(1)侧视图同正视图,如下图所示。
(2)该安全标识墩的体积为:
=
(3)如图,连结EG,HF及BD,EG与HF相交于O,连结PO,
由正四棱锥的性质可知,PO⊥平面EFGH,∴PO⊥HF
又EG⊥HF   ∴HF⊥平面PEG
又BD∥HF   ∴BD⊥平面PEG
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知直线,平面满足,则的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在四棱锥中,底面
的中点.
(Ⅰ)求和平面所成的角的大小;
(Ⅱ)证明平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

判断下列命题,正确的个数为(    )
①直线与平面没有公共点,则
②直线平行于平面内的一条直线,则
③直线与平面内的无数条直线平行,则
④平面内的两条直线分别平行于平面,则
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如左图已知异面线段, 线段中点的为,且,则异面线段所在直线所成的角为( )                                                 
A            B           C.            D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线m、l和平面α、β,则α⊥β的充分条件是
A.m⊥l,m //α,l//βB.m⊥l,α∩β=m,lα
C.m // l,m⊥α,l⊥βD.m // l,l⊥β,mα

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<).
(1)求MN的长;
(2)当a为何值时,MN的长最小;
(3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么(    )
A.点P必在直线AC上 B.点P必在直线BD上
C.点P必在平面DBC内              D.点P必在平面ABC外

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知“经过点且法向量为的平面的方程是”。现知道平面的方程为,则过的直线与平面所成角的余弦值是   

查看答案和解析>>

同步练习册答案