精英家教网 > 高中数学 > 题目详情
设命题p:实数x满足x2-4ax+3a2<0,a∈R;命题q:实数x满足x2-x-6≤0,或x2+2x-8>0,
(1)求命题p,q的解集;
(2)若a<0且?p是?q的必要不充分条件,求a的取值范围.
分析:(1)把命题P中的不等式左边分解因式后,分a大于0,小于0,等于0三种情况讨论即可求出不等式的解集记作集合A,分别把命题q中的两个不等式的解集求出后,求出两个解集的并集得到q的解集记作集合B;
(2)根据a<0且?p是?q的必要不充分条件得到a<0且p是q的充分不必要条件即A是B的子集,根据包含关系得到关于a的不等式,求出解集即可得到a的范围.
解答:解:(1)由命题p得:(x-3a)(x-a)<0,
则①当a>0时,a<x<3a;②当a<0时,3a<x<a;③当a=0时,x∈?
由命题q得:{x|q}={x|x2-x-6≤0或x2+2x-8>0}={x|x2-x-6≤0}∪{x|x2+2x-8>0}
={x|-2≤x≤3}∪{x|x<-4或x>2}={x|x<-4或x≥-2}.
(2)由?p是?q的必要不充分条件,
∴p是q的充分不必要条件,设A=(3a,a),B=(-∞,-4)∪[-2,+∞)
∴A⊆B,∴a≤-4或3a≥-2,
又∵a<0,
∴a≤-4或-
2
3
≤a<0.
点评:本题以必要条件为平台考查一元二次不等式的解法,考查分类讨论的思想,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足
x2-x-6≤0
x2+2x-8>0

(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足
x2-x-6≤0
x2+2x-8>0

(1)若a=
5
2
,若p∧q假,p∨q真,求实数x的取值范围;
(2)¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0(a>0)命题q:实数x满足
x2-x-6<0
x2+2x-8>0

(1)若a=1,且p∩q为真,求实数x的取值范围
(2)若?p是?q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足
x2-x-6≤0
|x+1|>3

(1)若a=1,且p且q为真,求实数x的取值范围;
(2)非p是非q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案