精英家教网 > 高中数学 > 题目详情

【题目】某班对一次实验成绩进行分析,利用随机数表法抽取样本时,先将50个同学按010203…50进行编号,然后从随机数表第9行第11列的数开始向右读,则选出的第6个个体是( )(注:表为随机数表的第8行和第9行)

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

A.00B.13C.42D.44

【答案】B

【解析】

根据随机数表抽取原则按序得到所抽取的个体即可得到结果.

行第列开始读取,依次得到的编号为:(舍)、(舍)、(舍)、(舍)、(舍)、(重复,舍)、(舍)、(舍)、

即第个个体为

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数且

(1)若函数为减函数,求实数的取值范围;

(2)若函数有两个不同的零点,求实数的取值范围,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家统计局统计了我国近10年(2009年2018年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.

根据该折线统计图,下面说法错误的是

A. 这10年中有3年的GDP增速在9.00%以上

B. 从2010年开始GDP的增速逐年下滑

C. 这10年GDP仍保持6.5%以上的中高速增长

D. 2013年—2018年GDP的增速相对于2009年—2012年,波动性较小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,均为等边三角形,OBC的中点.

1)证明:平面平面ABC

2)在棱上确定一点M,使得二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划投资开发一种新能源产品,预计能获得10万元1000万元的收益.现准备制定一个对开发科研小组的奖励方案:奖金(单位:万元)随收益(单位:万元)的增加而增加,且奖金总数不超过9万元,同时奖金总数不超过收益的.

(Ⅰ)若建立奖励方案函数模型,试确定这个函数的定义域、值域和的范围;

(Ⅱ)现有两个奖励函数模型:①;②.试分析这两个函数模型是否符合公司的要求?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,其焦距为,点在椭圆上,,直线的斜率为为半焦距)·

1)求椭圆的方程;

2)设圆的切线交椭圆两点(为坐标原点),求证:

3)在(2)的条件下,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面分别为线段上的点,且.

(1)求证:平面

(2)若直线与平面所成的角为,求平面与平面所成的锐二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】参加衡水中学数学选修课的同学,对某公司的一种产品销量与价格进行统计,得到如下数据和散点图:

定价(元/

年销售

(参考数据:

(I)根据散点图判断,哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?

(II)根据(I)的判断结果有数据,建立关于的回归方程(方程中的系数均保留两位有效数字);

(III)定价为多少元/时,年利润的预报值最大?

附:对一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年,某地认真贯彻落实中央十九大精神和各项宏观调控政策,经济运行平稳增长,民生保障持续加强,惠民富民成效显著,城镇居民收入稳步增长,收入结构稳中趋优.据当地统计局公布的数据,现将8月份至12月份当地的人均月收入增长率与人均月收入分别绘制成折线图(如图一)与不完整的条形统计图(如图二).请从图中提取相关的信息:

①10月份人均月收入增长率为左右;

②11月份人均月收入为2047元;

③从上图可知该地9月份至12月份人均月收入比8月份人均月收入均得到提高.

其中正确的信息个数为( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

同步练习册答案