(本题满分16分)已知函数,.
(1)当时,若上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对:存在,使得的最大值, 的最小值;
(3)对满足(2)中的条件的整数对,试构造一个定义在且 上的函数:使,且当时,.
(1)a的取值范围是
(2)满足条件的整数对是
(3)
【解析】(1)当时,,………………………………………………1分
若,,则在上单调递减,符合题意;………3分
若,要使在上单调递减,
必须满足 ……………………………………………………………………5分
∴.综上所述,a的取值范围是 …………………………………6分
(2)若,,则无最大值,………………………7分
故,∴为二次函数,
要使有最大值,必须满足即且,…8分
此时,时,有最大值.………………………………………分
又取最小值时,,………………………………………………………分
依题意,有,则,…………分
∵且,∴,得,………………分
此时或.
∴满足条件的整数对是.……………………………12分
(3)当整数对是时,
,是以2为周期的周期函数,………………………分
又当时,,构造如下:当,则,
,
故…
科目:高中数学 来源:2010-2011年江苏省淮安市楚州中学高二上学期期末考试数学试卷 题型:解答题
(本题满分16分)
已知函数,且对任意,有.
(1)求;
(2)已知在区间(0,1)上为单调函数,求实数的取值范围.
(3)讨论函数的零点个数?(提示:)
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三10月阶段性测试理科数学试卷(解析版) 题型:解答题
(本题满分16分)已知函数为实常数).
(I)当时,求函数在上的最小值;
(Ⅱ)若方程在区间上有解,求实数的取值范围;
(Ⅲ)证明:
(参考数据:)
查看答案和解析>>
科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题
(本题满分16分) 已知椭圆:的离心率为,分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2014届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题
(本题满分16分)已知函数是定义在上的偶函数,且当时,。
(Ⅰ)求及的值;
(Ⅱ)求函数在上的解析式;
(Ⅲ)若关于的方程有四个不同的实数解,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:江苏省2009-2010学年高二第二学期期末考试 题型:解答题
本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4 ;求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com