精英家教网 > 高中数学 > 题目详情
10.过点A(4,-a)和点B(6,b)的直线与直线y=-x+m垂直,则以AB为直径的圆的方程可以是(  )
A.x2+y2-10x+17=0B.x2+y2-2y-1=0
C.x2+y2-8x-4y+12=0D.x2+y2-10x-2y+24=0

分析 由题意,$\frac{b+a}{2}$=1,可得b+a=2,A,B的中点坐标为(5,$\frac{a+b}{2}$),即圆心坐标为(5,1),即可得出结论.

解答 解:由题意,$\frac{b+a}{2}$=1,
∴b+a=2,
A,B的中点坐标为(5,$\frac{a+b}{2}$),即圆心坐标为(5,1)
根据选项,D满足.
故选:D.

点评 本题考查圆的方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若数列{an}中,a1=2,且an=$\sqrt{3+{a}_{n-1}^{2}}$(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的前n项和为Sn,Sn=2an+4n(n=1,2,3,…)
(1)求{an}的通项公式;
(2)设bn=$\frac{4n}{4-{a}_{n}}$,数列{bn}的前n项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$-lg(3x-1)的定义域用区间表示为$(\frac{1}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正项数列{an}满足:a1=1,an2+2a2n+1≤3anan+1
(1)求证:$\frac{1}{{2}^{n-1}}$≤an≤1.
(2)设bn=$\frac{{a}_{n}}{{{a}^{2}}_{n+1}}$-$\frac{1}{{a}_{n+1}}$,求证:b1+b2+b3+…+bn<2n+1-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=x2在区间[x0,x0+△x]上的变化率为a,与在x=x0处瞬时变化率b的关系是(  )
A.a>bB.a=bC.a<bD.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:关于x的不等式x2+ax+b<0的解集为(1,2).求:关于x的不等式bx2+ax+1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将下列三角函数化为0°~45°内的角的三角函数.
(1)sin66°;
(2)cos74°;
(3)cos118°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知?x∈(0,+∞),[(m-1)x-1](x2-mx-1)≥0恒成立,则m的值为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案