精英家教网 > 高中数学 > 题目详情
9.cos(-40°)cos20°-sin(-40°)•sin(-20°)等于.
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 利用诱导公式化sin(-20°)=sin20°,然后利用两角和的余弦得答案.

解答 解:cos(-40°)cos20°-sin(-40°)•sin(-20°)
=cos(-40°)cos20°+sin(-40°)•sin20°
=cos(-40°-20°)
=cos60°
=$\frac{1}{2}$.
故选:C.

点评 本题考查诱导公式,考查了两角和的余弦,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.判断下列命题的真假,并给出证明:
(1)对任意满足不等式3x+2>0的实数x,2x2-x>0;
(2)对任意满足不等式3x+2>0的整数x,2x2-x>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,正方体ABCD-A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N:NB=1:2,MC与BD交于P,求证:面NPC⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知tan($\frac{π}{3}$-α)=$\frac{1}{3}$,则tan($\frac{2π}{3}$+α)=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知α是第二象限角,且7α与2α的终边相同,则α=144°+k•360°,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A(-2,1),B(2,3),C(1,-1),直线l经过点C且与线段AB相交,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\frac{1}{\sqrt{lo{g}_{2}(2x+1)-3}}$的定义域为($\frac{7}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知一曲线上任一点处的切线斜率为$\sqrt{x}$+$\root{3}{x}$,且曲线经过点(1,2),求该曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=lg(ax2+2x+1).
(1)当a=0时,求f(x)的定义域;
(2)当a=2时求f(x)的值域.

查看答案和解析>>

同步练习册答案