精英家教网 > 高中数学 > 题目详情
((本小题满分12分)
如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F、G分别为EB和AB的中点.

(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3) 求二面角B—FC—G的正切值.
∵F、G分别为EB、AB的中点,
∴FG=EA,又EA、DC都垂直于面ABC,  FG=DC,
∴四边形FGCD为平行四边形,∴FD∥GC,又GC面ABC,
∴FD∥面ABC.
(2)∵AB=EA,且F为EB中点,∴AF⊥EB ① 又FG∥EA,EA⊥面ABC
∴FG⊥面ABC ∵G为等边△ABC,AB边的中点,∴AG⊥GC.
∴AF⊥GC又FD∥GC,∴AF⊥FD ②
由①、②知AF⊥面EBD,又BD面EBD,∴AF⊥BD.
(3)由(1)、(2)知FG⊥GB,GC⊥GB,∴GB⊥面GCF.
过G作GH⊥FC,垂足为H,连HB,∴HB⊥FC.
∴∠GHB为二面角B-FC-G的平面角.
易求.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知菱形的边长为,.将菱形沿对角线折起,使,得到三棱锥.
(Ⅰ)若点是棱的中点,求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点是线段上一个动点,试确定点的位置,使得,并证明你的结论

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥P-ABC中,平面ABC, ,N为AB上一点,AB=" 4AN," M ,D ,S分别为PB,AB,BC的中点。

(1)求证:  PA//平面CDM;
(2)求证:  SN平面CDM.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图,在正四棱柱ABCD-A1B1C1D1中,AA1 =,AB = 1,E是DD1的中点.

(I)求直线B1D和平面A1ADD1所成角的大小;
(II)求证:B1D⊥AE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
如图,在三棱柱中,已知侧面

(1)求直线与底面ABC所成角正切值;
(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).
(3)在(2)的条件下,若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)
如图,在棱长为a的正方体ABCD—A1B1C1D1中,E、F分别为棱AB和BC的中点,EF交BD于H。
(1)求二面角B1—EF—B的正切值;
(2)试在棱B1B上找一点M,使D1M⊥平面EFB1,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则在内过点B的所有直线中(    )
A.不一定存在与平行的直线B.只有两条与平行的直线
C.存在无数条与平行的直线D.存在唯一一条与平行的直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四边形ABCD为正方形,PD平面ABCD,PD=AD=2。

(1)求PC与平面PBD所成的角;
(2)在线段PB上是否存在一点E,使得平面ADE?并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,点P在正方形ABCD所在平面外,PD⊥平面ABCDPDAD,则PABD所成角的度数为            .

查看答案和解析>>

同步练习册答案