如图,四棱锥中,四边形为矩形,为等腰三角形,,平面 平面,且,分别为和的中点.
(Ⅰ)证明:平面;
(Ⅱ)证明:平面平面;
(Ⅲ)求四棱锥的体积.
(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ).
解析试题分析:(Ⅰ)证明线面平行,一般可考虑线面平行的判定定理,构造面外线平行于面内线,其手段一般是构造平行四边形,或构造三角形中位线(特别是有中点时),本题易证从而达到目标;(Ⅱ)要证面面垂直,由面面垂直的判定定理知可先考察线面垂直,要证线面垂直,又要先考察线线垂直;(Ⅲ)求棱锥的体积,关键是作出其高,由面面及为等腰直角三角形,易知(中点为),就是其高,问题得以解决.
试题解析:(Ⅰ)证明:如图,连结.
∵四边形为矩形且是的中点.∴也是的中点.
又是的中点, 2分
∵平面,平面,所以平面; 4分
(Ⅱ)证明:∵平面 平面,,平面 平面,
所以平面 平面,又平面,所以 6分
又,是相交直线,所以面
又平面,平面平面; 8分
(Ⅲ)取中点为.连结,为等腰直角三角形,所以,
因为面面且面面,
所以,面,
即为四棱锥的高. 10分
由得.又.
∴四棱锥的体积 12分
考点:空间中线面的位置关系、空间几何体的体积.
科目:高中数学 来源: 题型:解答题
如图所示,在正方体ABCD﹣A1B1C1D1中,棱长AB=1.
(Ⅰ)求异面直线A1B与 B1C所成角的大小;(Ⅱ)求证:平面A1BD∥平面B1CD1.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直四棱柱ABCD-A1B1C1D1的底面ABCD为平行四边形,其中AB=, BD=BC=1, AA1=2,E为DC的中点,F是棱DD1上的动点.
(1)求异面直线AD1与BE所成角的正切值;
(2)当DF为何值时,EF与BC1所成的角为90°?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,平面,四边形是矩形,,M,N分别是AB,PC的中点,
(1)求平面和平面所成二面角的大小,
(2)求证:平面
(3)当的长度变化时,求异面直线PC与AD所成角的可能范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面为直角梯形,∥,,平面⊥底面,为的中点,是棱上的点,,,.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)若为棱的中点,求异面直线与所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com