精英家教网 > 高中数学 > 题目详情
(2013•烟台一模)对具有线性相关关系的变量x,y,测得一组数据如下表:
x 2 4 5 6 8
y 20 40 60 70 80
根据上表,利用最小二乘法得它们的回归直线方程为
y
=10.5x+
a
,据此模型来预测当x=20时,y的估计值为(  )
分析:求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程求出a,最后将x=20代入求出相应的y即可.
解答:解:∵
.
x
=
2+4+5+6+8
5
=5,
.
y
=
20+40+60+70+80
5
=54
∴这组数据的样本中心点是(5,54)
把样本中心点代入回归直线方程
y
=10.5x+
a
,∴54=10.5×5+a,
∴a=1.5,
∴回归直线方程为
y
=10.5x+1.5,当x=20时,
y
=10.5×20+1.5=211.5,
故选C.
点评:本题考查线性回归方程,解题的关键是线性回归直线一定过样本中心点,这是求解线性回归方程的步骤之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•烟台一模)设{an}是正数组成的数列,a1=3.若点(an,an+12-2an+1)(n∈N*)在函数f(x)=
1
3
x3+x2
-2的导函数y=f′(x)图象上.
(1)求数列{an}的通项公式;
(2)设bn=
2
an+1an
,是否存在最小的正数M,使得对任意n∈N*都有b1+b2+…+bn<M成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)i是虚数单位,复数
2-i
1+i
在复平面上的对应点在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)已知函数f(x)=
2x-1,(x≤0)
f(x-1)+1,(x>0)
,把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)若函数f(x)=2sinωx(ω>0)在区间[-
π
3
π
4
]
上单调递增,则ω的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)从参加某次高三数学摸底考试的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(1)补全这个频率分布直方图,并估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求x的分布列和数学期望.

查看答案和解析>>

同步练习册答案