精英家教网 > 高中数学 > 题目详情
如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设Sn为前n个正六边形的面积之和,则Sn=( )

A.2r2
B.
C.
D.6r2
【答案】分析:依题意可知,图形中图形中圆半径分别为:r,r•cos30°,(r•cos30°)cos30°,(r•cos30°,cos30°)cos30°,即 r,r,r,r,,从而可得每个正六边形的边成分别为:r,r,r,r,…由此可以求出
解答:解:依题意分析可知,图形中内切圆半径分别为:r,r•cos30°,(r•cos30°)cos30°,(r•cos30°,cos30°)cos30°,即 r,r,r,r,
从而可得每个正六边形的边成分别为:r,r,r,r,…
则正六边形的面积分别为:
所以 ==
故选:C
点评:本题考查函数的极限,解题时要认真审题,仔细计算,避免出错.解题的关键是熟练掌握正六边形的性质
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设Sn为前n个圆的面积之和,则
lim
n→∞
Sn=(  )
A、2πr2
B、
8
3
πr2
C、4πr2
D、6πr2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在半径为R的圆内随机撒一粒黄豆,它落在阴影部分内接正三角形上的概率是(  )
A、
3
4
B、
3
3
4
C、
3
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设Sn为前n个正六边形的面积之和,则
lim
n→∞
Sn=(  )

查看答案和解析>>

科目:高中数学 来源:2010年孝感高中高一下学期期末考试数学卷 题型:选择题

如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆, 

又在此内切圆内作内接正六边形,如此无限继续下去,设为前

个正六边形的面积之和,则=(   )

A.               B.                C.               D.

 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(湖北卷)解析版(理) 题型:选择题

 如图,在半径为r的圆内作内接正六边形,再作正六边形的

内切圆,又在此内切圆内作内接正六边形,如此无限继续下

去,设为前n个圆的面积之和,则=

    A.        B.   

    C.        D.

 

查看答案和解析>>

同步练习册答案