精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)讨论函数零点的个数;

2)若函数存在两个零点,证明:

【答案】1时,函数无零点.时,函数1个零点. 时,函数2个零点. 2)证明见解析.

【解析】

1)求出导数,得出函数的单调区间,根据的符号,函数零点的个数.

2)由(1)知两个零点,零点间关系是,变形为,引入变量,则,要证的不等式等价变形为,即证,(),为此引入新函数,利用导数研究函数的单调性为减函数,则可证得结论成立,这里需要多次求导变形再求导才可证明.

(1)有题意得

所以上单调递增,在上单调递减.

时,取得极大值,也是最大值为

所以当,即时,函数无零点.

,即时,函数1个零点.

,即时,

,设

恒成立,

单调递减,

所以各有一个零点,

函数2个零点.

综上所述:时,函数无零点.

时,函数1个零点.

时,函数2个零点.

2)由(1,即时,

有两个零点,(),则

,得

,则

显然成立,

要证,即证

只要证,即证,(),

,则,令

时,是减函数,

所以时,

所以是减函数,,即),

所以是减函数,

所以时是减函数,

,即

所以上是减函数,

所以,即

综上,成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,为坐标平面内动点,且成等差数列.

1)求动点的轨迹方程;

2)设点的轨迹为曲线,过点作直线交两点(不与原点重合),是否存在轴上一定点,使得_________.若存在,求出定点,若不存在,说明理由.从“①作点关于轴的对称点,则三点共线;②”这两个条件中选一个,补充在上面的问题中并作答(注:如果选择两个条件分别作答,按第一个解答计分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),.

1)求的极值;

2)当时,函数的图象恒在直线的上方,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,国家为了鼓励高校毕业生自主创业,出台了许多优惠政策,以创业带动就业.某高校毕业生小张自主创业从事苹果的种植,并开设网店进行销售.为了做好苹果的品控,小张从自己果园的苹果树上,随机摘取150个苹果测重(单位:克),其重量分布在区间内,根据统计的数据得到如图1所示的频率分布直方图.

1)以上述样本数据中频率作为概率,现一顾客从该果园购买了30个苹果,求这30个苹果中重量在内的个数的数学期望;

2)小张的网店为了进行苹果的促销,推出了买苹果,送福袋的活动,买家在线参加按图行进赢取福袋的游戏.该游戏的规则如下:买家点击抛掷一枚特殊的骰子,每次抛掷的结果为12,且这两种结果的概率相同;从出发格(第0格)开始,每掷一次,按照抛掷的结果,按如图2所示的路径向前行进一次,若掷出1点,即从当前位置向前行进一格(从第格到第格,),若掷出2点,即从当前位置向前行进两格(从第格到第格,),行进至第3l格(获得福袋)或第32格(谢谢惠顾),游戏结束.设买家行进至第格的概率为

(ⅰ)求,并写出用表示的递推式;

(ⅱ)求,并说明该大学生网店推出的此款游戏活动,是更有利于卖家,还是更有利于买家.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长等于2正方形中,点Q中点,点M,N分别在线段上移动(M不与A,B重合,N不与C,D重合),且,沿着将四边形折起,使得二面角为直二面角,则三棱锥体积的最大值为________;当三棱锥体积最大时,其外接球的表面积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距和长半轴长都为2.过椭圆的右焦点作斜率为的直线与椭圆相交于两点.

1)求椭圆的方程;

2)设点是椭圆的左顶点,直线分别与直线相交于点.求证:以为直径的圆恒过点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差为1的等差数列,是单调递增的等比数列,且.

1)求的通项公式;

2)设,数列的前项和,求

3)若数列的前项积为,求.

4)数列满足,其中,求.

5)解决数列问题时,经常需要先研究陌生的通项公式,只有先把通项公式研究明白,然后尽可能转化为我们熟悉的数列问题,由此使问题得到解决.通过对上面(2)(3)(4)问题的解决,你认为研究陌生数列的通项问题有哪些常用方法,要求介绍两个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四面体的所有顶点在球的表面上,平面,则球的表面积为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线交于M,抛物线C的焦点为F,且.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设点Q是抛物线C上的动点,点DEy轴上,圆内切于三角形,求三角形的面积的最小值.

查看答案和解析>>

同步练习册答案