精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(4,3), =(2,﹣1),O为坐标原点,P是直线AB上一点.
(1)若点P是线段AB的中点,求向量 与向量 夹角θ的余弦值;
(2)若点P在线段AB的延长线上,且| |= | |,求点P的坐标.

【答案】
(1)解:∵点P是线段AB的中点,∴点P的坐标为 ,即(3,1),

= =


(2)解:设P(x,y),由点P在线段AB的延长线上,且

,∴

解得:

∴点P的坐标为(﹣2,﹣9).


【解析】(1)利用中点坐标公式可得P,再利用向量夹角公式即可得出.(2)设P(x,y),由点P在线段AB的延长线上,且 ,可得 ,即 ,利用向量相等即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017广东佛山二模】如图,矩形中, 边上,且,将沿折到的位置,使得平面平面.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB为曲线Cy=上两点,AB的横坐标之和为4.

(1)求直线AB的斜率;

(2)设M为曲线C上一点,CM处的切线与直线AB平行,且AMBM,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为ODEF为圆O上的点,△DBC,△ECA,△FAB分别是以BCCAAB为底边的等腰三角形。沿虚线剪开后,分别以BCCAAB为折痕折起△DBC,△ECA,△FAB,使得DEF重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值,且导函数的极值点是的零点。(极值点是指函数取极值时对应的自变量的值)

求b关于a的函数关系式,并写出定义域;

证明:b>3a;

这两个函数的所有极值之和不小于,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 是5个正实数(可以相等).

证明:一定存在4个互不相同的下标 ,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点, 到抛物线的准线的距离为.

(I)求椭圆的方程和抛物线的方程;

(II)设上两点 关于轴对称,直线与椭圆相交于点异于点),直线轴相交于点.若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在x∈[ ,2]上,函数f(x)=x2+px+q与g(x)= + 在同一点取得相同的最小值,那么f(x)在x∈[ ,2]上的最大值是(
A.
B.4
C.8
D.

查看答案和解析>>

同步练习册答案