精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
9
+
y2
16
=1上一点P到两焦点距离的乘积为m,当m取得最大值时,点P的坐标是(  )
A、(3,0)和(-3,0)
B、(0,3)和(0,-3)
C、(4,0)和(-4,0)
D、(0,4)和(0,-4)
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设出椭圆的两焦点,由椭圆的定义得|PF1|+|PF2|=2a=8,再由基本不等式即可得到最大值及P为x轴上的顶点.
解答: 解:设椭圆
x2
9
+
y2
16
=1的焦点为F1、F2
由椭圆定义可得,|PF1|+|PF2|=2a=8,
则m=|PF1|•|PF2|≤(
|PF1|+|PF2|
2
2=a2=16.
当且仅当|PF1|=|PF2|=a=4,即P(3,0)或(-3,0),
m取得最大值16.
故选A.
点评:本题考查椭圆的定义、方程和性质,考查基本不等式的运用:求最值,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图是某班第1和第2小组学生身高的茎叶图(单位:cm),则这两个小组学生身高中位数的等差中项为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若程序框图如图所示,视x为自变量,y为函数值,可得函数y=f(x)的解析式,则f(x)>f(2)的解集为(  )
A、(2,+∞)
B、(4,5]
C、(-∞,-2]4
D、(-∞,-2)∪(3,5,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z∈C,则|z-2-i|+|z+3-4i|(i为虚数单位)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察以下等式:
C51+C35=23-2,C91+C95+C99=27+23
C131+C135+C139+C1311=211-25
C171+C175+C179+1713+C1717=215+27
由此推测:C20131+C20135+C2013+…+C20132013=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在集合{a,b,c,d}上定义两种运算⊕和?如下,那么d?(a⊕c)=(  )
A、aB、bC、cD、d

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωt+φ)(其中A>0,ω>0,|φ|<
π
2
)的图象如图1所示,它刻画了质点P做匀速圆周运动(如图2)时,质点相对水平直线l的位置值y(|y|是质点与直线l的距离(米),质点在直线l上方时,y为正,反之y为负)随时间t(秒)的变化过程.则

(1)质点P运动的圆形轨道的半径为
 
米;
(2)质点P旋转一圈所需的时间T=
 
秒;
(3)函数f(t)的解析式为:
 

(4)图2中,质点P首次出现在直线l上的时刻t=
 
秒.

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面向量
a
b
,满足|
a
|=3,|
b
|=2,
a
b
=-3,那么
a
b
的夹角θ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下面程序运行的结果是(  )
A、5,8B、8,5
C、8,13D、5,13

查看答案和解析>>

同步练习册答案