【题目】已知双曲线过点P(﹣3 ,4),它的渐近线方程为y=± x.
(1)求双曲线的标准方程;
(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.
【答案】
(1)解:设双曲线的方程为y2﹣ x2=λ(λ≠0),
代入点P(﹣3 ,4),可得λ=﹣16,
∴所求求双曲线的标准方程为
(2)解:设|PF1|=d1,|PF2|=d2,则d1d2=41,
又由双曲线的几何性质知|d1﹣d2|=2a=6,
∴d12+d22﹣2d1d2=36即有d12+d22=36+2d1d2=118,
又|F1F2|=2c=10,
∴|F1F2|2=100=d12+d22﹣2d1d2cos∠F1PF2
∴cos∠F1PF2=
【解析】(1)根据待定系数法求出双曲线的方程。(2)利用双曲线的定义得出关系式,两边平方可得出d12+d22 的值,根据余弦定理可求出cos的值即可。
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中, 平面, , 在线段上, , .
(1)求证: ;
(2)试探究:在上是否存在点,满足平面,若存在,请指出点的位置,并给出证明;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2 ,D是AA1的中点,BD与AB1交于点O,且CO⊥平面ABB1A1 .
(1)证明:CD⊥AB1;
(2)若OC=OA,求直线CD与平面ABC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F2分别是C: + =1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为 ,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是( )
A.(0, ]
B.[ , ]
C.[ , ]∪{ }
D.[ , )∪{ }
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com