【题目】已知函数
(1) 时,求函数的单调区间
讨论函数在定义域内的极值点的个数;
【答案】(1)增区间 减区间(2)见解析
【解析】试题分析:(1)求单调区间只需求导,令导函数大于零求增区间,小于零求减区间即可(2)讨论极值点得个数则需讨论函数在定义域内的单调性,当函数单调时无极值点,当函数不单调时分析区间拐点个数即极值点个数
试题解析:
解(1)增区间 减区间
(2)f(x)的定义域为(0,+∞),且f′(x)=a-=.
当a≤0时,f′(x)≤0在(0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递减,∴f(x)在(0,+∞)上没有极值点.
当a>0时,由f′(x)<0得0<x<,由f′(x)>0得x>,∴f(x)在上递减,在上递增,即f(x)在x=处有极小值.
∴当a≤0时,f(x)在(0,+∞)上没有极值点,当a>0时,f(x)在(0,+∞)上有一个极值点.
科目:高中数学 来源: 题型:
【题目】长为的线段的两个端点和分别在轴和轴上滑动.
(1)求线段的中点的轨迹的方程;
(2)当时,曲线与轴交于两点,点在线段上,过作轴的垂线交曲线于不同的两点,点在线段上,满足与的斜率之积为-2,试求与的面积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校对高二年段的男生进行体检,现将高二男生的体重数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组的人数为200.根据一般标准,高二男生体重超过属于偏胖,低于属于偏瘦.观察图形的信息,回答下列问题:
(1)求体重在内的频率,并补全频率分布直方图;
(2)用分层抽样的方法从偏胖的学生中抽取人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?
(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,离心率为,两焦点分别为,过的直线交椭圆于两点,且的周长为8.
(1)求椭圆的方程;
(2)过点作圆的切线交椭圆于两点,求弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍后得到曲线.试写出直线的直角坐标方程和曲线的参数方程:
(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”,其概率P(A)=0.96.
(1)求从该批产品中任取1件是二等品的概率p.
(2)若该批产品共100件,从中无放回抽取2件产品,ξ表示取出的2件产品中二等品的件数.求ξ的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到图3所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,
(Ⅰ)根据以上资料完成下面的2×2列联表,若据此数据算得,则在犯错的概率不超过5%的前提下,你是否认为“满意与否”与“性别”有关?
附:
(Ⅱ) 估计用户对该公司的产品“满意”的概率;
(Ⅲ) 该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程.
已知曲线的参数方程为(为参数),以直角坐标系原点为极点,轴正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)若直线的极坐标方程为,求直线被曲线截得的弦长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com