【题目】已知=(2asin2x,a),=(-1,2 sinxcosx+1),O为坐标原点,a≠0,设f(x)=+b,b>a. (1)若a>0,写出函数y=f(x)的单调递增区间;
(2)若函数y=f(x)的定义域为[ ,π],值域为[2,5],求实数a与b的值.
【答案】(1) ; (2)或.
【解析】
(1)先化简函数得f(x)= 2asin +b,再求函数的单调增区间.(2)对a分类讨论,利用不等式的性质和三角函数的图像和性质,求出函数的最大值和最小值即得a和b的值.
(1)f(x)=-2asin2x+2asinxcosx+a+b=2asin +b,
∵a>0,∴由2kπ-≤2x+≤2kπ+得,kπ-≤x≤kπ+,k∈Z.
∴函数y=f(x)的单调递增区间是[kπ-,kπ+](k∈Z)。
(2)x∈[,π]时,2x+∈ ,sin∈
当a>0时,f(x)∈[-2a+b,a+b] ∴ ,得,
当a<0时,f(x)∈[a+b,-2a+b]
∴ ,得综上知, 或 .
科目:高中数学 来源: 题型:
【题目】从5本不同的科普书和4本不同的数学书中选出4本,送给4位同学,每人1本,问:
(1)如果科普书和数学书各选2本,共有多少种不同的送法?(各问用数字作答)
(2)如果科普书甲和数学书乙必须送出,共有多少种不同的送法?
(3)如果选出的4本书中至少有3本科普书,共有多少种不同的送法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)如图,在直角坐标系中,角的顶点是原点,始边与轴正半轴重合.终边交单位圆于点,且,将角的终边按逆时针方向旋转,交单位圆于点,记.
(1)若,求;
(2)分别过作轴的垂线,垂足依次为,记的面积为,的面积为,若,求角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于的方程,给出下列四个命题
①存在实数,使得方程恰有2个不同的实根;
②存在实数,使得方程恰有4个不同的实根;
③存在实数,使得方程恰有5个不同的实根;
④存在实数,使得方程恰有7个不同的实根
A.3B.2C.1D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,其左、右焦点分别为,上顶点为,为坐标原点,过的直线交椭圆于两点,.
(1)若直线垂直于轴,求的值;
(2)若,直线的斜率为,则椭圆上是否存在一点,使得关于直线成轴对称?如果存在,求出点的坐标;如果不存在,请说明理由;
(3)设直线:上总存在点满足,当的取值最小时,求直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数满足①对于任意,都有;②;③的图像与轴的两个交点之间的距离为4.
(1)求的解析式;
(2)记
①若为单调函数,求的取值范围;
②记的最小值为,讨论函数零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】华为手机作为华为公司三大核心业务之一,2018年的销售量跃居全球第二名,某机构随机选取了100名华为手机的顾客进行调查,并将这人的手机价格按照,,…分成组,制成如图所示的频率分布直方图,其中是的倍.
(1)求,的值;
(2)求这名顾客手机价格的平均数(同一组中的数据用该组区间的中间值作代表);
(3)利用分层抽样的方式从手机价格在和的顾客中选取人,并从这人中随机抽取人进行回访,求抽取的人手机价格在不同区间的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com