精英家教网 > 高中数学 > 题目详情
8.以(-3,0)和(3,0)为焦点,长轴长为8的椭圆方程为(  )
A.$\frac{x^2}{16}+\frac{y^2}{25}=1$B.$\frac{x^2}{16}+\frac{y^2}{7}=1$C.$\frac{x^2}{25}+\frac{y^2}{16}=1$D.$\frac{x^2}{7}+\frac{y^2}{16}=1$

分析 求出椭圆的长半轴与短半轴的长,即可写出椭圆的标准方程.

解答 解:以(-3,0)和(3,0)为焦点,长轴长为8的椭圆,可知a=4,c=3,则b=$\sqrt{7}$,
椭圆的标准方程为:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{7}=1$.
故选:B.

点评 本题考查椭圆的标准方程的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知:抛物线方程;y2=2px(p>0),经过原点O的直线;x+3y=0与抛物线交于点A,点B在抛物线上,且直线OB⊥OA,△AOB的面积为60.求:
(1)抛物线的方程;
(2)直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x,y满足1g(lgy)=1g3x+1g(3-x),求y的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)={sin^2}x+2\sqrt{3}sinxcosx-{cos^2}x\;\;(x∈R)$.
(Ⅰ)求f(x)的最小正周期和在[0,π]上的单调递减区间;
(Ⅱ)若α为第四象限角,且$cosα=\frac{3}{5}$,求$f(\frac{α}{2}+\frac{7π}{12})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=x2(x≥1)的反函数为(  )
A.$y=\sqrt{x}$(x≥1)B.$y=\sqrt{-x}$(x≤-1)C.$y=\sqrt{x}$(x≥0)D.$y=\sqrt{-x}$(x≤0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数f(x)中,满足“对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是(  )
A.f(x)=(x-1)2B.f(x)=exC.f(x)=$\frac{1}{x}$D.f(x)=ln(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log2(x+$\frac{1}{4x-4}$).
(1)求函数f(x)的定义域;
(2)求函数f(x)的最小值及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设全集U=R,若集合A={x||x-1|>1},则∁UA=[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,P为椭圆上任意一点.
(1)当a=2,b=$\sqrt{3}$时,
①cos∠F1PF2的最小值是$\frac{1}{2}$;
②|PF1|•|PF2|的取值范围是[3,4];
③$|{\overrightarrow{P{F}_{1}}}^{2}|$+$|{\overrightarrow{P{F}_{2}}}^{2}|$的最小值是8.
(2)若满足|PF1|=2|PF2|,且∠F1PF2=$\frac{π}{3}$时,椭圆的离心率是$\frac{\sqrt{3}}{3}$;
(3)若满足|PF1|=2|PF2|时,椭圆离心率的取值范围是[$\frac{1}{3}$,1);
(4)若满足$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0时,椭圆的离心率的取值范围是[$\frac{\sqrt{2}}{2}$,1).
(5)过F2且垂直于x轴的直线与椭圆交于A,B两点,若△ABF1是锐角三角形,则椭圆的离心率的取值范围是($\sqrt{2}$-1,1);
(6)A,B是椭圆左、右顶点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2(k1k2≠0)时,若|k1|+|k2|的最小值为1,则椭圆离心率是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案