【题目】已知四边形是边长为5的菱形,对角线(如图1),现以为折痕将菱形折起,使点达到点的位置.棱,的中点分为,,且四面体的外接球球心落在四面体内部(如图2),则线段长度的取值范围为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中,AB∥CD,AB⊥BC,AB=BC=1,PA=CD=2,PA⊥底面ABCD,E在PB上.
(1)证明:AC⊥PD;
(2)若PE=2BE,求三棱锥P﹣ACE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线与轴交于点,直线与直线的交点为.
(1)证明:点恒在椭圆上.
(2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,若存在,使得对任意都成立,则称数列为“折叠数列”.
(1)若,,判断数列,是否是“ 折叠数列”,如果是,指出m的值;如果不是,请说明理由;
(2)若,求所有的实数q,使得数列是3-折叠数列;
(3)给定常数,是否存在数列使得对所有,都是折叠数列,且的各项中恰有个不同的值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过双曲线C:1(a>0,b>0)右焦点F2作双曲线一条渐近线的垂线,垂足为P,与双曲线交于点A,若 ,则双曲线C的渐近线方程为( )
A.y=±xB.y=±xC.y=±2xD.y=±x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.
(1)写出曲线C1和C2的直角坐标方程;
(2)已知P为曲线C2上的动点,过点P作曲线C1的切线,切点为A,求|PA|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:,过右焦点F的直线l与椭圆E交于A,B两点(A,B两点不在x轴上),椭圆E在A,B两点处的切线交于P,点P在定直线上.
(1)记点,求过点与椭圆E相切的直线方程;
(2)以为直径的圆过点F,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)若直线与曲线交于、两点,点的坐标为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com