精英家教网 > 高中数学 > 题目详情
的内角所对边的长分别是,且
(1)求的值;
(2)求的值.
(1);(2).

试题分析:(1)根据,则有,再由正、余弦定理.可以求得.(2)由余弦定理可以求出,而,所以.故.
(1)因为,所以,由正、余弦定理得.因为,所以.
由余弦定理得.由于,所以.故
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在△ABC中,A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=b•cosC
(I)求角B的大小;
(II)设
m
=(sinA,2),
n
=(2
3
,-cosA),求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,角A,B,C所对的边分别为a,b,c, cosC+(cosA-sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某实验室一天的温度(单位:)随时间(单位:)的变化近似满足函数关系;
.
(1)求实验室这一天上午8时的温度;
(2)求实验室这一天的最大温差.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平行四边形ABCD中,对角线AC=,BD=,周长为18,则这个平行四边形的面积为(  )
A.16B.C.18D.32

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,有一块正方形区域ABCD,现在要划出一个直角三角形AEF区域进行绿化,满足:EF=1米,设角AEF=θ,θ,边界AE,AF,EF的费用为每米1万元,区域内的费用为每平方米4 万元.

(1)求总费用y关于θ的函数.
(2)求最小的总费用和对应θ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是角A、B、C的对边,,且
(1).求角B的大小;
(2).求sin A+sin C的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

计算:      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,内角A,B,C的对边分别为a,b,c.若,则A="__________."

查看答案和解析>>

同步练习册答案