【题目】已知圆O:x2+y2=16及圆内一点F(﹣3,0),过F任作一条弦AB.
(1)求△AOB面积的最大值及取得最大值时直线AB的方程;
(2)若点M在x轴上,且使得MF为△AMB的一条内角平方线,求点M的坐标.
【答案】
(1)解:设∠AOB=θ,则 ,
当 时,S△AOBmax=8,此时O到AB的距离为 , ,
∴S△AOBmax=8,直线AB的方程为
(2)解:当直线AB斜率不存在时,MF始终平分∠AMB.
当直线AB斜率存在时,设直线AB:y=k(x+3),(k≠0),设M(m,0),
由 得:(1+k2)x2+6k2x+(9k2﹣16)=0
设A(x1,y1),B(x2,y2),则 , .
∵∠BMF=∠AMF,
∴kBM+kAM=0, ,
∴(x1+3)(x2﹣m)+(x2+3)(x1﹣m)=0,
∴2x1x2+(3﹣m)(x1+x2)﹣6m=0,
∴ ,
∴﹣32﹣6m=0, ,
∴
【解析】(1)设∠AOB=θ,则 ,即可求△AOB面积的最大值及取得最大值时直线AB的方程;(2)分类讨论,由 得:(1+k2)x2+6k2x+(9k2﹣16)=0,利用∠BMF=∠AMF,kBM+kAM=0,即可得出结论.
科目:高中数学 来源: 题型:
【题目】《张邱建算经》是中国古代数学史上的杰作,该书中有首古民谣记载了一数列问题:“南山一棵竹, 竹尾风割断, 剩下三十节,一节一个圈. 头节高五寸①,头圈一尺三②.逐节多三分③,逐圈少分三④. 一蚁往上爬,遇圈则绕圈. 爬到竹子顶,行程是多远?”(注释:①第一节的高度为尺;②第一圈的周长为尺;③每节比其下面的一节多尺;④每圈周长比其下面的一圈少尺) 问:此民谣提出的问题的答案是
A. 尺 B. 尺
C. 尺 D. 尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x2﹣2ax)(a>0且a≠1)满足对任意的x1 , x2∈[3,4],且x1≠x2时,都有 >0成立,则实数a的取值范围是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,则直线D1E与A1D所成角的大小是 , 若D1E⊥EC,则直线A1D与平面D1DE所成的角为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=(ax﹣1)(x﹣1).
(1)若不等式f(x)<0的解集为{x|1<x<2},求实数a的值;
(2)当a>0时,解关于x的不等式f(x)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , n∈N* , 已知a1=1,a2= ,a3= ,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn﹣1 .
(1)求a4的值.
(2)证明:{an﹣1﹣ an}为等比数列;
(3)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x,y的方程C:x2+y2﹣2x﹣4y+m=0.
(1)当m为何值时,方程C表示圆.
(2)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且MN= ,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com