精英家教网 > 高中数学 > 题目详情

【题目】已知圆O:x2+y2=16及圆内一点F(﹣3,0),过F任作一条弦AB.
(1)求△AOB面积的最大值及取得最大值时直线AB的方程;
(2)若点M在x轴上,且使得MF为△AMB的一条内角平方线,求点M的坐标.

【答案】
(1)解:设∠AOB=θ,则

时,SAOBmax=8,此时O到AB的距离为

∴SAOBmax=8,直线AB的方程为


(2)解:当直线AB斜率不存在时,MF始终平分∠AMB.

当直线AB斜率存在时,设直线AB:y=k(x+3),(k≠0),设M(m,0),

得:(1+k2)x2+6k2x+(9k2﹣16)=0

设A(x1,y1),B(x2,y2),则

∵∠BMF=∠AMF,

∴kBM+kAM=0,

∴(x1+3)(x2﹣m)+(x2+3)(x1﹣m)=0,

∴2x1x2+(3﹣m)(x1+x2)﹣6m=0,

∴﹣32﹣6m=0,


【解析】(1)设∠AOB=θ,则 ,即可求△AOB面积的最大值及取得最大值时直线AB的方程;(2)分类讨论,由 得:(1+k2)x2+6k2x+(9k2﹣16)=0,利用∠BMF=∠AMF,kBM+kAM=0,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《张邱建算经》是中国古代数学史上的杰作,该书中有首古民谣记载了一数列问题:“南山一棵竹, 竹尾风割断, 剩下三十节,一节一个圈. 头节高五寸,头圈一尺三.逐节多三分,逐圈少分三. 一蚁往上爬,遇圈则绕圈. 爬到竹子顶,行程是多远?”(注释:第一节的高度为尺;第一圈的周长为尺;每节比其下面的一节多尺;每圈周长比其下面的一圈少尺) 问:此民谣提出的问题的答案是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x2﹣2ax)(a>0且a≠1)满足对任意的x1 , x2∈[3,4],且x1≠x2时,都有 >0成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,则直线D1E与A1D所成角的大小是 , 若D1E⊥EC,则直线A1D与平面D1DE所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在四棱柱中,点分别为的中点.

(1)求证: 平面

(2)若四棱柱是长方体,且,求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(ax﹣1)(x﹣1).
(1)若不等式f(x)<0的解集为{x|1<x<2},求实数a的值;
(2)当a>0时,解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应的程序,则输出的结果为(
A.2
B.1
C.0
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , n∈N* , 已知a1=1,a2= ,a3= ,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn1
(1)求a4的值.
(2)证明:{an1 an}为等比数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x,y的方程C:x2+y2﹣2x﹣4y+m=0.
(1)当m为何值时,方程C表示圆.
(2)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且MN= ,求m的值.

查看答案和解析>>

同步练习册答案