精英家教网 > 高中数学 > 题目详情
3.已知θ是第四象限角,且$sin(θ+\frac{π}{4})=\frac{3}{5}$,则cosθ=$\frac{{7\sqrt{2}}}{10}$.

分析 由两角和的正弦函数化简已知的等式,由平方关系列出方程,结合题意和三角函数值的符号判断出:sinθ<0、cosθ>0,联立方程后求出cosθ的值.

解答 解:由$sin(θ+\frac{π}{4})=\frac{3}{5}$得$sinθcos\frac{π}{4}+cosθsin\frac{π}{4}=\frac{3}{5}$,
则$\frac{\sqrt{2}}{2}(sinθ+cosθ)=\frac{3}{5}$,①
又sin2θ+cos2θ=1,②
因为θ是第四象限角,sinθ<0、cosθ>0,③
由①②③解得,cosθ=$\frac{{7\sqrt{2}}}{10}$,
故答案为:$\frac{{7\sqrt{2}}}{10}$.

点评 本题考查两角和的正弦函数,三角函数值的符号,以及平方关系的应用,考查方程思想,化简、计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{\sqrt{x-1}}{x-2}$的定义域为(  )
A.(1,+∞)B.[1,+∞)C.[1,2)D.[1,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知PB⊥矩形ABCD所在的平面,E,F分别是BC,PD的中点,∠PAB=45°,AB=1,BC=2.
(1)求证:EF∥平面PAB;   
(2)求证:平面PED⊥平面PAD;
(3)求三棱锥E-PAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设定义在R上的函数f(x)的导函数为f′(x),且满足f(2-x)=f(x),$\frac{f′(x)}{x-1}$<0,若x1+x2>2,x1<x2,则(  )
A.f(x1)<f(x2B.f(x1)=f(x2
C.f(x1)>f(x2D.f(x1)与f(x2)的大小不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F(c,0)作x轴的垂线,与椭圆C在第一象限内交于点A,过A作直线x=$\frac{{a}^{2}}{c}$的垂线,垂足为B,|AF|=$\frac{\sqrt{3}}{3}$,|AB|=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为圆E:x2+y2=4上任意一点,过点P作椭圆C的两条切线l1、l2,设l1、l2分别交圆E于点M、N,证明:MN为圆E的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,且椭圆C过点$({1,\frac{3}{2}})$.
(I)求椭圆C的标准方程;
(Ⅱ)若椭圆C的右顶点为A,直线l交椭圆C于E、F两点(E、F与A点不重合),且满足AE⊥AF,若点P为EF中点,求直线AP斜率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )
A.乙的众数是21B.甲的中位数是24
C.甲的极差是29D.甲罚球命中率比乙高

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
商店名称ABCDE
销售额x(千万元)35679
利润额y(千万元)23345
(Ⅰ)用最小二乘法计算利润额y对销售额x的回归直线方程$\widehaty=\widehatbx+\widehata$;
(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=2-x-$\frac{4}{x}$的值域为(-∞,-2]∪[6,+∞).

查看答案和解析>>

同步练习册答案