(12分)下图是一几何体的直观图、主视图、俯视图、左视图.
(1)若F为PD的中点,求证:AF⊥面PCD;
(2)证明BD∥面PEC;
(3)求面PEC与面PDC所成的二面角(锐角)的余弦值.
解: (1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥面ABCD,
PA∥EB,PA=2EB=4.∵PA=AD,F为PD的中点,
∴PD⊥AF,
又∵CD⊥DA,CD⊥PA,PA∩DA=A,
∴CD⊥面ADP,
∴CD⊥AF.又CD∩DP=D, ∴AF⊥面PCD. 4分
(2)取PC的中点M,AC与BD的交点为N,连结MN,
∴MN=PA,MN∥PA,
∴MN=EB,MN∥EB,故四边形BEMN为平行四边形,
∴EM∥BN,又EM面PEC,∴BD∥面PEC. 7分
(3)分别以BC,BA,BE为x,y,z轴建立空间直角坐标系,
则C( 4,0,0),D(4 ,4 ,0),E(0,0,2),A(0,4 ,0),P(0,4,4),
∵F为PD的中点,∴F(2,4,2).
∵AF⊥面PCD,∴为面PCD的一个法向量,
=(-2,0,-2),设平面PEC的法向量为=(x,y ,z),
则,
∴,令x=1,∴, 10分
∴
∴与的夹角为.
面PEC与面PDC所成的二面角(锐角)的余弦值为. 12分
科目:高中数学 来源: 题型:
(12分)如下图是一个方格迷宫,甲、乙两人分别位于迷宫的A、B两处,两人同时以每分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、西行走的概率都为,向南、北行走的概率为和p,乙向东、西、南、北四个方向行走的概率均为q.
(1)求p和q的值;
(2)问最少几分钟,甲乙二人相遇?并求出最短时间内可以相遇的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com