精英家教网 > 高中数学 > 题目详情

【题目】的方程为:为圆上任意一点,过轴的垂线,垂足为,点上,且.

(1)求点的轨迹的方程;

(2)过点的直线与曲线交于两点,点的坐标为的面积为,求的最大值,及直线的方程.

【答案】(1)(2),直线的方程为.

【解析】

(1)设点的坐标,求出的坐标,设,通过,可以得到

的关系,的关系,把代入圆的方程中,最后得到点的轨迹的方程。

(2)由题意易知直线的斜率不为0,设直线的方程为,直线方程与点的轨迹的方程联立,根据一元二次方程根与系数关系,可以得出的面积的表达式,最后利用基本不等式可以求出的最大值,直线的方程.

(1)设,则,设,因为,所以,把代入圆的方程得,所以的轨迹的方程为.

(2)由题意易知直线的斜率不为0,设直线的方程为,设

联立

.

当且仅当时取等号,

所以面积有最大值为.

所以的面积为最大时,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过抛物线(其中)的焦点的直线交抛物线于两点,且两点的纵坐标之积为

(1)求抛物线的方程;

(2)当时,求的值;

(3)对于轴上给定的点(其中),若过点两点的直线交抛物线的准线点,求证:直线轴交于一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每本单价(元)试销l天,得到如表单价(元)与销量(册)数据:

单价(元)

销量(册)

1)已知销量与单价具有线性相关关系,求关于的线性回归方程;

2)若该书每本的成本为元,要使得售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,当时,,给出下列命题:

①当时, ②函数有3个零点

的解集为,都有

其中正确命题的个数是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代第一部数学专著,全书总结了战国、秦、汉时期的数学成就。“更相减损术”便出自其中,原文记载如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。”其核心思想编译成如示框图,若输入的分别为45,63,则输出的为( )

A. 2B. 3C. 5D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,对一切,点都在函数的图像上.

(1)证明:当时,;

(2)求数列的通项公式;

(3)设为数列的前n项的积,若不等式对一切成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆锥的轴截面为等腰为底面圆周上一点。

(1)若的中点为,求证: 平面

(2)如果,求此圆锥的体积;

(3)若二面角大小为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在正整数集上的函数,且满足:当成立时,总可推出 成立那么下列命题中正确的是(

A.成立,则当时均有成立

B.成立,则当时均有成立

C.成立,则当时均有成立

D.成立,则当时均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点分别为椭圆的左右顶点,直线于点是等腰直角三角形,且

(1)求的方程;

(2)设过点的动直线相交于两点,为坐标原点.当为直角时,求直线的斜率.

查看答案和解析>>

同步练习册答案