精英家教网 > 高中数学 > 题目详情
6.《算数书》竹简于上世纪八十年代在湖北省张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“禾盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈$\frac{1}{36}$L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈$\frac{7}{264}$L2h相当于将圆锥体积公式中的圆周率π近似取为(  )
A.$\frac{22}{7}$B.$\frac{25}{8}$C.$\frac{23}{7}$D.$\frac{157}{50}$

分析 用L表示出圆锥的底面半径,得出圆锥的体积关于L和h的式子V=$\frac{{L}^{2}h}{12π}$,令$\frac{{L}^{2}h}{12π}$=$\frac{7}{264}$L2h,解出π的近似值.

解答 解:设圆锥的底面半径为r,则圆锥的底面周长L=2πr,
∴r=$\frac{L}{2π}$,
∴V=$\frac{1}{3}π{r}^{2}h$=$\frac{{L}^{2}h}{12π}$.
令$\frac{{L}^{2}h}{12π}$=$\frac{7}{264}$L2h,得π=$\frac{22}{7}$.
故选A.

点评 本题考查了圆锥的体积公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x≤1\\ y≥-1\end{array}\right.$,若m=2x-y,则m的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知抛物线y2=2px(p>0)的焦点在直线2x-y-4=0上,求p的值;
(2)已知双曲线的渐近线方程为$y=±\frac{3}{4}x$,准线方程为$x=±\frac{16}{5}$,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A车和B车,同时进来C,D两车,在C,D不相邻的条件下,C和D至少有一辆与A和B车相邻的概率是(  )
A.$\frac{10}{17}$B.$\frac{14}{17}$C.$\frac{9}{16}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)=ax2-(2a-1)x-lnx(a为常数,a≠1).
(Ⅰ)当a<0时,求函数f(x)在区间[1,2]上的最大值;
(Ⅱ)记函数y=f(x)图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.cos$\frac{2017π}{6}$的值是(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(I)化简求值:${log_{\frac{1}{3}}}\sqrt{27}+lg25+lg4+{7^{-{{log}_7}2}}+{(-0.98)^0}$;
(II)已知角α的终边上一点$P(\sqrt{2},-\sqrt{6})$,求值:$\frac{{cos(\frac{π}{2}+α)cos(2π-α)+sin(-α-\frac{π}{2})cos(π-α)}}{{sin(π+α)cos(\frac{π}{2}-α)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l平行于直线3x+4y-7=0,并且与两坐标轴围成的△OAB的面积为24,
(Ⅰ)求直线l的方程;
(Ⅱ)求△OAB的内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a•2x+b的图象过点$A({1,\frac{3}{2}})$,$B({2,\frac{5}{2}})$.
(1)求函数y=f(x)的反函数y=f-1(x)的解析式;
(2)若$F(x)={f^{-1}}({{2^{x-1}}})-{log_{\frac{1}{2}}}f(x)$,求使得F(x)≤0的x取值范围.

查看答案和解析>>

同步练习册答案