精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是边长为的菱形,是等边三角形,分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求直线所成角的正弦值.

【答案】(Ⅰ)证明见解析(Ⅱ)

【解析】

连接,由已知得,,又的中点,所以,计算可得,,可得,可得平面;

)取AB的中点O,连结OSOD,可得ODBN, CDODCDSD,可得,, OPSCD, 计算可得OP的值,可得AB//SCD, 可得直线所成角的正弦值.

解:(Ⅰ)连接,由已知得,,又的中点,所以.

再由,所以,由,∴,故.

)取AB的中点O,连结OSOD,由已知OD= OS= ODBN

根据(1)有CDODCDSD

所以.又

OPSD,则OPSCD

SOD中,OD=OS=SD=3

AB//SCD

A到平面SCD的距离等于点O到平面SCD的距离

设直线所成角为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列关于概率和统计的几种说法:①10名工人某天生产同一种零件,生产的件数分别是15171410151717161412,设其平均数为,中位数为,众数为,则的大小关系为;②样本4210-2的标准差是2;③在面积为内任选一点,则随机事件的面积小于的概率为;④从写有0129的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是.其中正确说法的序号有______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.

1)求椭圆的方程;

2)设点在椭圆上,且异于椭圆的上、下顶点,点为直线轴的交点,点轴的负半轴上.若为原点),且,求证:直线的斜率与直线MN的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为,离心率为上的一个动点.当的上顶点时,的面积为

1)求的方程;

2)设斜率存在的直线的另一个交点为.若存在点,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,椭圆过点.

(1)求椭圆的方程;

(2)过点的直线(不过坐标原点)与椭圆交于两点,且点轴上方轴下方,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:坐标系与参数方程

在直角坐标系中,直线的参数方程为(其中t为参数),在以原点O为极点,以轴为极轴的极坐标系中,曲线C的极坐标方程为

1)求直线的普通方程及曲线的直角坐标方程;

2)设是曲线上的一动点, 的中点为,求点到直线的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,点在底面上的射影是的中点

1)求证:直线平面

2)若分别为的中点,求直线与平面所成角的正弦值;

3)当四棱锥的体积最大时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】湖北省2019年新高考方案公布,实行“”模式,即“3”是指语文、数学、外语必考,“1”是指物理、历史两科中选考一门,“2”是指生物、化学、地理、政治四科中选考两门,在所有选科组合中某学生选择考历史和化学的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ADEF与梯形ABCD所在平面互相垂直,,点M是EC的中点.

(1)求证:平面ADEF平面BDE.

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案