精英家教网 > 高中数学 > 题目详情
设一个等比数列的首项为a(a>0),公比为q(q>0),其前n项和为80,而其中最大的一项为54,又其前2n项和为6560,求a和q.
分析:根据S2n-Sn=6480>Sn,可推断出公比大于1,即数列为递增数列,故可知第n项为数值的最大项.与Sn=80,S2n=6560联立方程可求得首项a和q的值.
解答:解:设公比为q,∵S2n-Sn=6480>Sn
∴q>1.
又由an>0,则最大项是an=a1qn-1=54;①
又Sn=
a1(1-qn)
1-q
=80,②
S2n=
a1(1-q2n)
1-q
=6560,③
由①②③解得a=2,q=3.
点评:本题考查了等比数列的通项公式,以及求和公式,解题的关键是通过判断数列的递增或递减找到数值最大项.
练习册系列答案
相关习题

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

设一个等比数列的首项为a(a>0),公比q(q>0),其前n项和为80,而其中最大的一项为54,又其前2n项的和为6560.求a和q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设一个等比数列的首项为a(a>0),公比为q(q>0),其前n项和为80,而其中最大的一项为54,又其前2n项和为6560,求a和q.

查看答案和解析>>

科目:高中数学 来源: 题型:

设一个等比数列的首项为a(a>0),公比为q(q>0),它的前n项和为80,而其中最大一项为54,又前2n项的和为6 560,求a和q.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年黑龙江省鹤岗一中高一(下)期中数学试卷(理科)(解析版) 题型:解答题

设一个等比数列的首项为a(a>0),公比为q(q>0),其前n项和为80,而其中最大的一项为54,又其前2n项和为6560,求a和q.

查看答案和解析>>

同步练习册答案