精英家教网 > 高中数学 > 题目详情

【题目】为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同。若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰。

1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?

2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围。

【答案】1)见解析;(20

【解析】

1)药物在白鼠血液内的浓度y与时间t的关系为:当a1时,

yy1+y2

0t1时,y=﹣t4=﹣(2,所以ymaxf

1t3时,∵,所以ymax72 (当t 时取到),因为 ,故ymaxf

2)由题意y

,又0t1,得出a1

由于1t3得到,令,则

所以,综上得到以0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体外接球的表面积是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1(a>b>0)的离心率为,直线l:x+2y=4与椭圆有且只有一个交点T.

(I)求椭圆C的方程和点T的坐标;

)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断是否为定值,若是请求出定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解一家企业生产的某类产品的使用寿命(单位:小时),现从中随机抽取一定数量的产品进行测试,绘制频率分布直方图如图所示.

(1)假设同一组中的每个数据可用该组区间的中点值代替,估算这批产品的平均使用寿命;

(2)已知该企业生产的这类产品有甲、乙两个系列,产品使用寿命不低于60小时为合格,合格产品中不低于90小时为优异,其余为一般.现从合格产品中,用分层抽样的方法抽取70件,其中甲系列有35件(1件优异).请完成下面的列联表,并根据列联表判断能否有的把握认为产品优异与系列有关?

甲系列

乙系列

合计

优异

一般

合计

参考数据:

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间几何体ABCDFE中,底面是边长为2的正方形,.

(1)求证:AC//平面DEF;

(2)已知,若在平面上存在点,使得平面,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为.过抛物线上一点的切线交椭圆两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存在直线,使得,若存在,求出的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商为分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,搜集了相关数据,得到下列表格:

(1)请用相关系数说明之间是否存在线性相关关系(当时,说明之间具有线性相关关系);

(2)建立关于的线性回归方程(系数精确到),预测当宣传费用为万元时的利润,

附参考公式:回归方程最小二乘估计公式分别为

,相关系数

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公交车的数量太多容易造成资源浪费,太少又难以满足乘客的需求,为了合理布置车辆,公交公司在2路车的乘客中随机调查了50名乘客,经整理,他们候车时间(单位:)的茎叶图如下:

(Ⅰ)将候车时间分为八组,作出相应的频率分布直方图;

(Ⅱ)若公交公司将2路车发车时间调整为每隔15发一趟车,那么上述样本点将发生变化(例如候车时间为9的不变,候车时间为17的变为2),现从2路车的乘客中任取5人,设其中候车时间不超过10的乘客人数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,OACBD的交点,EAD的中点,A1E⊥平面ABCD.

(1)证明:A1O∥平面B1CD1

(2)设MOD的中点,证明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

同步练习册答案