设L为曲线C:y=在点(1,0)处的切线.
(1)求L的方程;
(2)证明:除切点(1,0)之外,曲线C在直线L的下方.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(2)若函数y=|f(x)-t|-1有三个零点,求t的值;
(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x3-ax-1
(1)若f(x)在实数集R上单调递增,求a的取值范围;
(2)是否存在实数a,使f(x)在(-1,1)上单调递减,若存在,求出a的取值范围;若不存在,说明理由;
(3)证明f(x)=x3-ax-1的图象不可能总在直线y=a的上方.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知a,b∈R,函数f(x)=a+ln(x+1)的图象与g(x)=x3-x2+bx的图象在交点(0,0)处有公共切线.
(1)证明:不等式f(x)≤g(x)对一切x∈(-1,+∞)恒成立;
(2)设-1<x1<x2,当x∈(x1,x2)时,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,(>0,,以点为切点作函数图象的切线,记函数图象与三条直线所围成的区域面积为.
(1)求;
(2)求证:<;
(3)设为数列的前项和,求证:<.来
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ln ax- (a≠0).
(1)求函数f(x)的单调区间及最值;
(2)求证:对于任意正整数n,均有1+(e为自然对数的底数);
(3)当a=1时,是否存在过点(1,-1)的直线与函数y=f(x)的图象相切?若存在,有多少条?若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com