精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求曲线处的切线方程;

2)若不等式对任意恒成立,求正整数的最小值.

【答案】1

21

【解析】

1)求出切线斜率,切点坐标,即可求得切线方程;

2)分离参数得恒成立,构造新的函数,对求导,得,再构造函数.再求,分析的单调性,利用零点存在定理发现在区间上存在一个零点,由.同时可得时,单调递增,时,单调递减,则,则.又因为m为正整数,所以的最小值是1.

解:(1

切线的斜率为

所求切线的方程为

2)当时,整理可得

,则

,则

,得

时,,函数单调递减,

在区间上存在一个零点

此时,即

时,,即,函数单调递增,

时,,即,函数单调递减,

有极大值,即最大值为

正整数的最小值是1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在其定义域内为单调函数,求的取值范围;

2)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现给出两个条件:①,②,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在中,分别为内角所对的边( ).

1)求

2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程

1)写出的普通方程和的直角坐标方程;

2)设点M上,点N上,求|MN|的最小值以及此时M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中, 的中点.

(1)证明: 平面

(2)若,点在平面的射影在上,且侧面的面积为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸.呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院人进行了问卷调查得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

合计

已知在全部人中随机抽取人,抽到患心肺疾病的人的概率为.

1)请将上面的列联表补充完整,并判断是否有的把握认为患心肺疾病与性别有关?请说明你的理由;

2)已知在不患心肺疾病的位男性中,有位从事的是户外作业的工作.为了指导市民尽可能地减少因雾霾天气对身体的伤害,现从不患心肺疾病的位男性中,选出人进行问卷调查,求所选的人中至少有一位从事的是户外作业的概率.

下面的临界值表供参考:

(参考公式,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x|xa|aR.

1)当f2+f(﹣2)>4时,求a的取值范围;

2)若a0xy∈(﹣a],不等式fx≤|y+3|+|ya|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图像上存在两个不同的点关于轴对称,则称函数图像上存在一对偶点

1)写出函数图像上一对偶点的坐标;(不需写出过程)

2)证明:函数图像上有且只有一对偶点

3)若函数图像上有且只有一对偶点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程;

(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.

查看答案和解析>>

同步练习册答案