精英家教网 > 高中数学 > 题目详情
如下图所示,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.

(1)求证:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
(1)见解析   (2)   (3)M的坐标为(2,2,0),见解析
解:(1)∵DE⊥平面ABCD,∴DE⊥AC,∵ABCD是正方形,∴AC⊥BD,又DE∩BD=D,∴AC⊥平面BDE.
(2)∵DE⊥平面ABCD,∴∠EBD就是BE与平面ABCD所成的角,即∠EBD=60°.
.由AD=3,得DE=3,AF=.
如图所示,分别以DA,DC,DE所在直线为x轴、y轴、z轴建立空间直角坐标系,则A(3,0,0),F(3,0,),E(0,0,3),B(3,3,0),C(0,3,0),

=(0,-3,),=(3,0,-2).
设平面BEF的法向量为n=(x,y,z),则
,即.
令z=,则n=(4,2,).
∵AC⊥平面BDE,
=(3,-3,0)为平面BDE的一个法向量,
∴cos〈n,〉=.
又二面角F-BE-D为锐角,故二面角F-BE-D的余弦值为.
(3)依题意,设M(t,t,0)(0≤t≤3),则=(t-3,t,0),
∴AM∥平面BEF,∴·n=0,
即4(t-3)+2t=0,解得t=2.
∴点M的坐标为(2,2,0),此时
∴点M是线段BD上靠近B点的三等分点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,平面为棱上的动点,.
⑴当的中点,求直线与平面所成角的正弦值;
⑵当的值为多少时,二面角的大小是45.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:直三棱柱(侧棱⊥底面)ABC—A1B1C1中,∠ACB=90°,AA1=AC=1,BC=,CD⊥AB,垂足为D.

(1)求证:BC∥平面AB1C1;
(2)求点B1到面A1CD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面,,且,点上.
(1)求证:
(2)若二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系内,有四个定点A(-3,0),B(1,-1),C(0,3),D(-1,3)及一个动点P,则|PA|+|PB|+|PC|+|PD|的最小值是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在Z轴上有一点M,使得M到点A(1,0,2)与点B(1,-3,1)的距离相等,则M的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,则直线AE与平面ABC1D1所成角的正弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1
则BM与AN所成的角的余弦值为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案