已知数列{an}的前n项和Sn=n2+1,数列{bn}是首项为1,公比为b的等比数列.
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Tn.
科目:高中数学 来源: 题型:解答题
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前n项和Sn·
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在各项均为正数的等比数列{an}中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log3an,求数列{anbn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0的两根,且a1=1.
(1)求证:数列是等比数列;
(2)求数列{an}的前n项和Sn;
(3)设函数f(n)=bn-t·Sn(n∈N*),若f(n)>0对任意的n∈N*都成立,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}成等比数列,且an>0.
(1)若a2-a1=8,a3=m.①当m=48时,求数列{an}的通项公式;②若数列{an}是唯一的,求m的值;
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
数列前项和,数列满足(),
(1)求数列的通项公式;
(2)求证:当时,数列为等比数列;
(3)在(2)的条件下,设数列的前项和为,若数列中只有最小,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com