精英家教网 > 高中数学 > 题目详情

对于下列四个命题:①数学公式;②数学公式;③tan138°>tan143°;④tan40°>sin40°.其中正确命题的序号是


  1. A.
    ①③
  2. B.
    ①④
  3. C.
    ②③
  4. D.
    ②④
B
分析:①根据正弦函数的单调性判断
②将函数化到(0,)区间上进行比较.
③根据正切函数的单调性进行比较
④根据在(0,)上,tanx>sinx比较.
解答:①f(x)=sinx在[-,0]上为增函数,故

③f(x)=tanx在(,π)上单调递增,故tan138°<tan143°;
④在(0,)上,tanx>sinx,tan40°>sin40°.故正确的为①④.
故选B.
点评:本题考查了正弦函数、余弦函数即正切函数的单调性,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:A、存在一个圆与所有直线相交;B、存在一个圆与所有直线不相交;C、存在一个圆与所有直线相切;D、M中的直线所能围成的正三角形面积都相等
其中真命题的代号是
 
(写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:
(1)M中所有直线均经过一个定点;
(2)存在定点P不在M中的任一条直线上;
(3)对于任意正整数n(n≥3),存在正n边形,其所有边均在M中的直线上;
(4)M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于下列四个命题
①若向量
a
b
,满足
a
b
<0
,则
a
b
的夹角为钝角;
②已知集合A=正四棱柱,B=长方体,则A∩B=B;
③在直角坐标平面内,点M(|a|,|a-3|)与N(cosα,sinα)在直线x+y-2=0的异侧;
④对2×2数表定义平方运算如下:
ab
cd
)2=
ab
cd
ab
cd
=
a2+bcab+bd
ac+cdbc+d2
,则
10
-11
)2
=
10
-21

其中真命题是
 
(将你认为的正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于下列四个命题:①sin(-
π
18
)>sin(-
π
10
)
;②cos(-
25π
4
)>cos(-
17π
4
)
;③tan138°>tan143°;④tan40°>sin40°.其中正确命题的序号是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:
A.M中所有直线均经过一个定点
B.存在定点P不在M中的任一条直线上
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上
D.M中的直线所能围成的正三角形面积都相等
其中真命题的代号是
BC
BC
(写出所有真命题的代号).

查看答案和解析>>

同步练习册答案