精英家教网 > 高中数学 > 题目详情
如图,直角梯形ABMN中,∠NAB=90°,AN∥BM,AB=2,AN=,BM=,椭圆C以A,B为焦点且过点N.

(1)建立适当的坐标系,求椭圆C方程;
(2)若点E满足,问是否存在不平行AB的直线L与椭圆C交于P,Q两点,且|PE|=|QE|,若存在,求出直线L与AB夹角的范围;若不存在,说明理由?
(1)
(2)存在           L与AB的夹角范围为(0,
(1)先建立直角坐标系,设所求椭圆方程为,根据AB=2,AN=,BM=,得A(-1,0), B(1,0), N(-1,),代入椭圆方程可求得;(2)设L:y="kx+m" (k≠0),与椭圆方程联立,求得PQ的中点坐标用k,m表示,由PQ⊥EFm=,由Δ>0可得4k2+3≥m2
解:(1)以AB所在直线为x轴,AB中点O为原点建立如图所示的坐标系,
A(-1,0), B(1,0), N(-1,),
设所求椭圆方程为, …………………2分
把N点坐标代入椭圆方程,可得:,,
解得,
故所求椭圆方程为:
(2)设E(x,y),M(1,)∵∴E(0,1)
显然L:x=0不满足
设L:y="kx+m" (k≠0),与椭圆方程
联立可得:(3+4k2)x2+8kmx+4m2-12=0
由Δ>0可得4k2+3≥m2, ……………………9分
设PQ的中点为F(x0,y0),P(x1,y1)
Q(x2,y2),则2x0=,2y0=
由PQ⊥EFm=,
,
∴0<k2≤1,∴k∈[-1,1]且k≠0∴L与AB的夹角范围为(0,…13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,线段轴的交点满足;⊙O是以F1F2为直径的圆,一直线l与⊙O相切,并与椭圆交于不同的两点AB.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当且满足时,求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的左焦点为为椭圆上一点,其横坐标为,则=(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C (ab>0)的离心率为,且经过点P(1,)。
(1)求椭圆C的方程;
(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M。问点M满足什么条件时,圆My轴有两个交点?
(3)设圆My轴交于DE两点,求点DE距离的最大值。   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知是长轴长为的椭圆上的三点,点是长轴的一个顶点, 过椭圆中心,且
(1)求椭圆的方程;   
(2)如果椭圆上两点使的平分线垂直,则是否存在实数使?请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线,圆O:=36(O为坐标原点),椭圆C:=1(a>b>0)的离心率为e=,直线l被圆O截得的弦长与椭圆的长轴长相等。
(I)求椭圆C的方程;(II)过点(3,0)作直线l,与椭圆C交于A,B两点设(O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在 ,求出直线l的方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的离心率,长轴的左右两个端点分别为
(1)求椭圆C的方程;
(2)点在该椭圆上,且,求点轴的距离;
(3)过点(1,0)且斜率为1的直线与椭圆交于P,Q两点,求△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的两个焦点,P为椭圆上的一点,且.若的面积为9,则           .

查看答案和解析>>

同步练习册答案