【题目】用0,1,2,3,4这五个数字组成无重复数字的自然数.
(1)在组成的五位数中,所有奇数的个数有多少?
(2)在组成的五位数中,数字1和3相邻的个数有多少?
(3)在组成的五位数中,若从小到大排列,30124排第几个?
【答案】(1)36个(2)36个(2)49个
【解析】
(1)先排个位数,方法数有种,然后排万位数,方法数有种,剩下百位、十位和千位任意排,方法数有种,再按分步乘法计数原理即可求得种类数.
(2)把数字1和3捆绑在一起,则相当于有4个位置,最高位不为0,其余位置任意排;
(3)计算出比30124小的五位数的情况,即可知道30124排第几个.
(1)在组成的五位数中,所有奇数的个数有个;
(2)在组成的五位数中,数字1和3相邻的个数有个;
(3)要求在组成的五位数中,要求得从小到大排列,30124排第几个,则计算出比30124小的五位数的情况,
比30124小的五位数,则万位为1或2,其余位置任意排,即,故在组成的五位数中比30124小的数有48个,所以在组成的五位数中,若从小到大排列,30124排第49个.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点,的坐标分别为,.直线,相交于点,且它们的斜率之积是.记点的轨迹为.
(Ⅰ)求的方程.
(Ⅱ)已知直线,分别交直线于点,,轨迹在点处的切线与线段交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:
分组 | 频数 | 频率 |
[39.95,39.97) | 10 | |
[39. 97,39.99) | 20 | |
[39.99,40.01) | 50 | |
[40.01,40.03] | 20 | |
合计 | 100 |
(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;
(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批球的直径误差不超过0.03 mm的概率;
(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 为奇函数.
(1)求b的值;
(2)证明:函数f(x)在区间(1,+∞)上是减函数;
(3)解关于x的不等式f(1+x2)+f(-x2+2x-4)>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的标准方程为:,该椭圆经过点P(1,),且离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆长轴上一点S(1,0)作两条互相垂直的弦AB、CD.若弦AB、CD的中点分别为M、N,证明:直线MN恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(ax2+2x+3).
(1)若f(x)定义域为R,求a的取值范围;
(2)若f(1)=1,求f(x)的单调区间;
(3)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率,抛物线的焦点恰好是椭圆的右焦点.
(1)求椭圆的标准方程;
(2)过点作两条斜率都存在的直线,设与椭圆交于两点,与椭圆交于两点,若是与的等比中项,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,x的取值范围是( )
A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com