【题目】设奇函数在(0,+∞)上为单调递增函数,且,则不等式的解集为 。
【答案】
【解析】
首先根据f(x)在(0,+∞)上为单调递增函数,且f(2)=0,得到当0<x<2时,f(x)<0;当x≥2时,f(x)≥0.再结合函数为奇函数证出:当x≤﹣2时,f(x)≤0且﹣2<x<0时,f(x)>0,最后利用这个结论,将原不等式变形,讨论可得所求解集.
∵f(x)在(0,+∞)上为单调递增函数,且f(2)=0,
∴当0<x<2时,f(x)<0;当x≥2时,f(x)≥0
又∵f(x)是奇函数
∴当x≤﹣2时,﹣x≥2,可得f(﹣x)≥0,从而f(x)=﹣f(﹣x)<0.即x≤﹣2时f(x)≤0;
同理,可得当﹣2<x<0时,f(x)>0.
不等式0可化为:0,即0
∴或,解之可得x≥2或x≤﹣2
所以不等式0的解集为
故答案为:
科目:高中数学 来源: 题型:
【题目】“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M的概率为;同时,有个水平相同的人也在研究项目M,他们各自独立地解决项目M的概率都是.现在李某单独研究项目M,且这个人组成的团队也同时研究项目M,设这个人团队解决项目M的概率为,若,则的最小值是( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的零点.
(2)当,求函数在上的最大值;
(3)对于给定的正数,有一个最大的正数,使时,都有,试求出这个正数的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函数f(x)的解析式;
(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆,三个点,B、C均在圆上,
(1)求该圆的圆心的坐标;
(2)若,求直线BC的方程;
(3)设点满足四边形TABC是平行四边形,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.
(1)根据图象,求函数的解析式;
(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在甲、乙两个盒子中分别装有标号为1,2,3,4的四张卡片,现从甲、乙两个盒子中各取出一张卡片,每张卡片被取出的可能性相等.
(1)求取出的两张卡片上标号为相邻整数的概率;
(2)求取出的两张卡片上标号之和能被3整除的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,右焦点为,点在椭圆上.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,直线分别与轴交于点,在轴上,是否存在点,使得无论非零实数怎样变化,总有为直角?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com