精英家教网 > 高中数学 > 题目详情
已知G为△ABC内一点,且
AB
+
AC
=3
AG

(1)化简
AG
+
BG
+
CG

(2)若O为平面内不同于G的任意一点,求证:
OG
=
1
3
OA
+
OB
+
OC
).
分析:(1)由G为△ABC内一点,且
AB
+
AC
=3
AG
.可得点G为△ABC的重心.利用重心的性质即可得出.
(2)由(1)可得
AG
+
BG
+
CG
=
0
.可得
OG
-
OA
+
OG
-
OB
+
OG
-
OC
=
0
,化简即可.
解答:(1)解:∵G为△ABC内一点,且
AB
+
AC
=3
AG
精英家教网
∴点G为△ABC的重心.
AG
+
BG
+
CG
=
1
3
(
AB
+
AC
)
+
1
3
(
BA
+
BC
)
+
1
3
(
CA
+
CB
)
=
0

(2)证明:由(1)可得
AG
+
BG
+
CG
=
0

OG
-
OA
+
OG
-
OB
+
OG
-
OC
=
0

化为
OG
=
1
3
(
OA
+
OB
+
OC
)
点评:本题考查了三角形的重心定理的性质、向量的运算法则,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知△ABC中,∠C=
π
2
.设∠CBA=θ,BC=a,它的内接正方形DEFG的一边EF在斜边AB上,D、G分别在AC、BC上.假设△ABC的面积为S,正方形DEFG的面积为T.
(1)用a,θ表示△ABC的面积S和正方形DEFG的面积T;
(2)设f(θ)=
T
S
,试求f(θ)的最大值P,并判断此时△ABC的形状;
(3)通过对此题的解答,我们是否可以作如下推断:若需要从一块直角三角形的材料上裁剪一整块正方形(不得拼接),则这块材料的最大利用率要视该直角三角形的具体形状而定,但最大利用率不会超过第(2)小题中的结论P.请分析此推断是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•朝阳区一模)已知矩形ABCD中,AB=
2
,AD=1
,将△ABD沿BD折起,使点A在平面BCD内的射影落在DC上,E、F、G分别为棱BD、AD、AB的中点.
(1)求证:DA⊥平面ABC;
(2)求点C到平面ABD的距离;
(3)求二面角G-FC-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)已知二次函数f(x)=ax2+bx+c和“伪二次函数”g(x)=ax2+bx+clnx(a、b、c∈R,abc≠0),
(I)证明:只要a<0,无论b取何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)在二次函数f(x)=ax2+bx+c图象上任意取不同两点A(x1,y1),B(x2,y2),线段AB中点的横坐标为x0,记直线AB的斜率为k,(i)求证:k=f′(x0);(ii)对于“伪二次函数”g(x)=ax2+bx+clnx,是否有(i)同样的性质?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三下学期开学质量检测数学试卷 题型:解答题

(本小题满分14分)如图,已知四面体ABCD的四个面均为锐角三角形,E、F、G、H分别为边AB、BC、CD、DA上的点,BD∥平面EFGH,且EH=FG.

 

 

(1) 求证:HG∥平面ABC;

(2) 请在面ABD内过点E作一条线段垂直于AC,并给出证明.

 

查看答案和解析>>

科目:高中数学 来源:2013届山西省晋商四校高二下学期联考理科数学试卷(解析版) 题型:解答题

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>

同步练习册答案