精英家教网 > 高中数学 > 题目详情
9.计算
(1)$\frac{2lg2+lg3}{{\frac{1}{2}lg36-lg\frac{1}{2}}}+{log_4}({8^7}×{2^5})$
(2)$\frac{{\sqrt{1-2sin{{2530}°}cos{{1430}°}}}}{{cos{{1790}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

分析 (1)由条件利用对数的运算性质求得所给式子的值.
(2)由条件利用诱导公式求得所给式子的值.

解答 解:(1)$\frac{2lg2+lg3}{{\frac{1}{2}lg36-lg\frac{1}{2}}}+{log_4}({8^7}×{2^5})$=$\frac{lg12}{lg6+lg2}$+${{log}_{4}2}^{26}$=1+13=14.
(2)$\frac{{\sqrt{1-2sin{{2530}°}cos{{1430}°}}}}{{cos{{1790}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$=$\frac{\sqrt{1-2sin10°cos(-10°)}}{cos(-10°)-sin10°}$=$\frac{cos10°-sin10°}{cos10°-sin10°}$=1.

点评 本题主要考查对数的运算性质、诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y≤0}\end{array}\right.$,则目标函数z=2x-y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果让你证明命题:“命题A成立的充分必要条件是命题B”成立时,你认为“由命题A成立推证命题B成立”是在证“必要性”还是在证“充分性”?必要条件或充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对于以下四个命题:
①若函数f(x)=logax(a>0,a≠1)在其定义域内是减函数,则loga2<0;
②设函数f(x)=2x+$\frac{1}{2x}$-1(x<0),则函数f(x)有最小值1;
③若向量$\overrightarrow a=(1,k)$,$\overrightarrow b=(-2,6)$,$\overrightarrow{a}$∥$\overrightarrow{b}$,则k=-3;
④函数y=(sinx+cosx)2-1的最小正周期是2π.
其中正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若sin2x>cos2x,则x的取值范围是(kπ+$\frac{π}{4}$,$\frac{3π}{4}$+kπ)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若等轴双曲线的顶点到渐近线的距离为$\sqrt{2}$,则该双曲线的焦点到渐近线的距离为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出下列几个结论:
①若扇形的半径为1,周长为4,则该扇形的圆心角的弧度数的绝对值为2;
②函数f(x)=$\frac{2x-1}{x-1}$的图象的对称中心是点(1,2);
③已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,1),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{\sqrt{2}}{2}$;
④若方程x2+(a+2)x+a=0有一个正实根和一个负实根,则a<0;
⑤设曲线y=|1-x2|和直线y=m,(m∈R)的公共点个数是n,则n的值可能是1.
其中正确结论的序号是①②④.(将正确结论的序号全部填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{1}{|x|-1}$-k(k是常数)没有零点,则k的取值范围是-1<k≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=$\frac{3}{2}$x+2与双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{9}=1$的位置关系是(  )
A.相切B.相交C.相离D.无法确定

查看答案和解析>>

同步练习册答案