精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AA1=2,AC= ,过BC的中点D作平面ACB1的垂线,交平面ACC1A1于E,则BE与平面ABB1A1所成角的正切值为(
A.
B.
C.
D.

【答案】C
【解析】解:连结A1C,A1B,取A1C的中点E,连结DE,BE, ∵AC⊥AB,AC⊥AA1 , ∴AC⊥平面AA1B1B,∴AC⊥A1B.
∵AB=AA1 , ∴四边形AA1B1B是正方形,∴A1B⊥B1A,
∴A1B⊥平面B1CD,
∵D为BC的中点,E为A1C的中点,∴DE∥A1B,
∴DE⊥平面B1CD.
取A1A的中点F,连结EF,BF,则EF⊥平面AA1B1B,
∴∠EBF为BE与平面ABB1A1所成角.
∵EF= = ,AF= =1,AB=2,
∴BF= ,∴tan∠EBF= =
故选C.

【考点精析】认真审题,首先需要了解空间角的异面直线所成的角(已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且满足S4=24,S7=63. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x+2sinxcosx+3cos2x. (Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若x∈[0, ],求函数f(x)的最值及相应x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于序列A0:a0 , a1 , a2 , …,an(n∈N*),实施变换T得序列A1:a1+a2 , a2+a3 , …,an1+an , 记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A0)),记作A2=T2(A0);…;An1=Tn1(A0).最后得到的序列An1只有一个数,记作S(A0). (Ⅰ)若序列A0为1,2,3,求S(A0);
(Ⅱ)若序列A0为1,2,…,n,求S(A0);
(Ⅲ)若序列A和B完全一样,则称序列A与B相等,记作A=B,若序列B为序列A0:1,2,…,n的一个排列,请问:B=A0是S(B)=S(A0)的什么条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.得到甲、乙两位学生成绩的茎叶图.

(1)现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为哪位学生的成绩更稳定?请说明理由;

(2)求在甲同学的8次预赛成绩中,从不小于80分的成绩中随机抽取2个成绩,列出所有结果,并求抽出的2个成绩均大于85分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+2|+|x﹣a|,x∈R
(1)若a<0,且log2f(x)>2对任意x∈R恒成立,求实数a的取值范围;
(2)若a>0,且关于x的不等式f(x)< x有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项中,奇数项的和为56,偶数项的和为48,且(其中).

(1)求数列的通项公式;

(2)若,…,,…是一个等比数列,其中,求数列的通项公式;

(3)若存在实数,使得对任意恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义域为R的偶函数y=f(x)满足f(x+2)=﹣f(x),且当x∈[0,2]时,f(x)=2﹣x2 , 则方程f(x)=sin|x|在[﹣3π,3π]内根的个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是

A. 若随机变量服从正态分布,

B. 组数据的散点都在上,则相关系数

C. 若随机变量服从二项分布,

D. 的充分不必要条件;

查看答案和解析>>

同步练习册答案