【题目】已知正方体的六个面的中心可构成一个正八面体,现从正方体内部任取一个点,则该点落在这个正八面体内部的概率为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】已知抛物线焦点为,直线过与抛物线交于两点.到准线的距离之和最小为8.
(1)求抛物线方程;
(2)若抛物线上一点纵坐标为,直线分别交准线于.求证:以为直径的圆过焦点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线过点,其参数方程为 (为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)求已知曲线和曲线交于,两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数),曲线C2的参数方程为(α为参数),以坐标原点为极点.x轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;
(Ⅱ)射线与曲线C2交于O,P两点,射线与曲线C1交于点Q,若△OPQ的面积为1,求|OP|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知定点F(1,0),点A在x轴的非正半轴上运动,点B在y轴上运动,满足0,A关于点B的对称点为M,设点M的轨迹为曲线C.
(1)求C的方程;
(2)已知点G(3,﹣2),动直线x=t(t>3)与C相交于P,Q两点,求过G,P,Q三点的圆在直线y=﹣2上截得的弦长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】田忌赛马是《史记》中记载的一个故事,说的是齐国大将军田忌经常与齐国众公子赛马,孙膑发现田忌的马和其他人的马相差并不远,都分为上、中、下三等.于是孙膑给田忌将军献策:比赛即将开始时,他让田忌用下等马对战公子们的上等马,用上等马对战公子们的中等马,用中等马对战公子们的下等马,从而使田忌赢得了许多赌注.假设田忌的各等级马与某公子的各等级马进行一场比赛,田忌获胜的概率如下表所示:
比赛规则规定:一次比赛由三场赛马组成,每场由公子和田忌各出一匹马参赛,结果只有胜和负两种,并且毎一方三场赛马的马的等级各不相同,三场比赛中至少获胜两场的一方为最终胜利者.
(1)如果按孙膑的策略比赛一次,求田忌获胜的概率;
(2)如果比赛约定,只能同等级马对战,每次比赛赌注1000金,即胜利者赢得对方1000金,每月比赛一次,求田忌一年赛马获利的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F是抛物线的焦点,若点在抛物线C上,且
(1)求抛物线C的方程;
(2)动直线与抛物线C相交于两点,问:在x轴上是否存在定点(其中),使得x轴平分?若存在,求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定数列.对,该数列前项的最小值记为,后项的最大值记为,令.
(1)设数列为2,1,6,3,写出,,的值;
(2)设是等比数列,公比,且,证明:是等比数列;
(3)设是公差大于0的等差数列,且,证明:是等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com