精英家教网 > 高中数学 > 题目详情

已知数列{an}满足an+2=an+1-an,a1=1,a2=2,则S2005=


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
A
分析:本题可通过递推公式求出数列的前九项,从而确定数列周期为6,再由数列周期从而求解a2011=a1,求出结果.
解答:∵a1=1,a2=2,且an+2=an+1-an
∴a3=1.a4=-1,a5=-2,a6=-1,a7=1,a8=2,a9=1…
∴数列{an}是周期为6的周期函数
且从第一项起每连续6项的和为0,a2005=a334×6+1=a1=1
∴S2005=334×0+a2005=1
故选A.
点评:本题考查了由递推公式求数列中的项,数列求和.其中渗透了周期数列这一知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案