精英家教网 > 高中数学 > 题目详情

已知f(x)=2x3-6x2+a(a是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是


  1. A.
    -37
  2. B.
    37
  3. C.
    -32
  4. D.
    32
A
分析:求导函数,确定函数在定义域内的单调性,从而确定函数的最大值,利用f(x)有最大值3,可求出参数a的值,进一步可求出f(x)的最小值.
解答:求导函数,f′(x)=6x2-12x,
令 f′(x)>0得x<0或x>2,又因为x∈[-2,2]
所以f(x)在[-2,0]上是增函数,在[0,2]上是减函数,
所以f(x)在区间[-2,2]的最大值为f(x)max=f(0)=a=3
所以f(-2)=-37,f(2)=-5,
所以x=-2时,函数的最小值为-37.
故选A.
点评:本题重点考查导数知识的应用,以三次的多项式函数为模型进行考查,以同时考查函数的单调性为辅,是基础题,却是一个非常好的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知f(x)=2x3-6x+m(m为常数),在[0,2]上有最大值3,那么此函数在[0,2]上的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x3+ax与g(x)=bx2+c的图象都过点P(2,0),且在点P处有公共切线,求f(x),g(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-2x3+6x2+m(m为常数)在[-2,2]上有最小值3,那么此函数在[-2,2]上的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x3-6x2+a(a为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的值域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x3+ax2+b-1是奇函数,则a-b=
-1
-1

查看答案和解析>>

同步练习册答案