精英家教网 > 高中数学 > 题目详情
已知f(x)是R上的可导函数.
(1)f(-x)在x=a处的导数值与f(x)在x=-a处的导数值有什么关系?
(2)若f(x)为偶函数,f′(x)的奇偶性如何?
分析:(1)用复合函数的求导法则求f(-x)的导数,再求在x=a处的导数值.
(2)函数在某点处导数的定义求f′(-x),由奇函数、偶函数定义得解.
解答:解:(1)∵f(-x)的导数为-f′(-x)
∴f(-x)在x=a处的导数值为-f′(-a)
又f(x)在x=-a处的导数值为f′(-a)
故f(-x)在x=a处的导数值与f(x)在x=-a处的导数值互为相反数.
(2)因为f(x)为偶函数,
所以f′(-x)=
lim
△x→0
f(-x+△x)-f(-x)
△x
=-
lim
-△x→0
f(x-△x)-f(x)
-△x
=-f′(x).
所以f′(x)为奇函数
点评:考查函数f(-x)在x=a处的导数值不是f′(-a),函数在某点处导数值的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知f(x)是R上的偶函数,f(2)=-1,若f(x)的图象向右平移1个单位长度,得到一个奇函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零点,比较f(a),f(-2),f(1.5)的大小,用小于符号连接为
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=
x

(1)求当x<0时,f(x)的表达式
(2)判断f(x)在区间(0,+∞)的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若g(-1)=2,则f(2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①命题“已知f(x)是R上的减函数,若a+b≥0,则f(a)+f(b)≤f(-a)+f(-b)”的逆否命题为真命题;
②若p或q为真命题,则p、q均为真命题;
③若命题p:?x∈R,x2-x+1<0,则?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要条件.
其中正确的是(  )

查看答案和解析>>

同步练习册答案