精英家教网 > 高中数学 > 题目详情
已知离心率为
2
2
的椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦点分别为F1、F2,椭圆C1与抛物线C2:y2=-x的交点的横坐标为
-2.
(1)求椭圆的标准方程;
(2)如果直线l:y=kx+m与椭圆相交于P1、P2两点,设直线P1F1与P2F1的倾斜角分别为α,β,当α+β=π时,求证:直线l必过定点.
分析:(1)利用椭圆的离心率的值,得到椭圆中参数的关系,利用椭圆C1与抛物线C2:y2=-x的交点的横坐标为-2,代入抛物线的方程,求出交点的坐标,代入椭圆方程求出参数值,即得到椭圆的方程.
(2)将直线的方程与椭圆的方程联立,利用韦达定理,得到交点的坐标满足的条件,将已知条件α+β=π转化为两条直线的斜率满足k1+k2=0,将斜率用坐标表示,得到 m=4k,代入直线的方程,判断出直线过定点.
解答:精英家教网解:(1)由于e2=
c2
a2
=1-
b2
a2
=
1
2
b2
a2
=
1
2
,a2=2b2
又因y2=-x的交点的横坐标为-2,y2=2,代入
(-2)2
2b2
+
2
b2
=1,
4
b2
=1,b2=4

∴a2=8
所以椭圆方程为    
x2
8
+
y2
4
=1

(2)联立
x2
8
+
y2
4
=1
与y=kx+m得到(2k2+1)x2+4mkx+2m2-8=0x1+x2=-
4mk
2k2+1
x1x2=
2m2-8
2k2+1

设直线P1F1与P2F1的倾斜角分别为α,β,
当α+β=π时,若设k1=kP1F1k2=kP2F1
k1=tanα,k2=tanβ=tan(π-α)=-tanα=-k1
∴k1+k2=0
k1=
y1
x1+2
=
kx1+m
x1+2
k2=
y2
x2+2
=
kx2+m
x2+2

k1+k2=
kx1+m
x1+2
+
kx2+m
x2+2
=
(kx1+m)(x2+2)+(kx2+m)(x1+2)
(x1+2)(x2+2)

=
2kx1x2+(2k+m)(x1+x2)+4m
(x1+2)(x2+2)

=
2k(2m2-8)+(2k+m)(-4mk)+4m(2k2+1)
(x1+2)(x2+2)(2k2+1)
=
-16k+4m
(x1+2)(x2+2)(2k2+1)
=0

所以   m=4k
直线方程为    y=kx+4k=k(x+4),
故直线过定点 (-4,0)
点评:解决直线与圆锥曲线的相交的有关问题,一般的思路是将直线与圆锥曲线方程联立,得到关于应该未知数的方程,利用韦达定理来解决.属于难题,计算量大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(
6
,1),O为坐标原点.
(1)求椭圆C的方程;
(2)已知直线l与椭圆C交于不同的两点A、B,若直线l是圆O:x2+y2=
8
3
的一条切线,试证明∠AOB=
π
2
.它的逆命题成立吗?若成立,请给出证明;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(
6
,1,O是坐标原点.
(1)求椭圆C的方程;
(2)已知点A、B为椭圆C上相异两点,且
OA
OB
,判定直线AB与圆O:x2+y2=
8
3
的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
过点M(
6
,1)
,O为坐标原点
(1)求椭圆方程
(2)已知直线l与椭圆C交于不同的两点A,B,若直线l是圆O:x2+y2=
8
3
的一条切线,求证:∠AOB=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点M(
6
,1)

(1)求椭圆C的方程;
(2)已知与圆x2+y2=
8
3
相切的直线l与椭圆C相交于不同两点A、B,O为坐标原点,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,上顶点为E,直线EF截圆x2+y2=1所得弦长为
2

(1)求椭圆C的方程;
(2)过D(-2,0)的直线l与椭圆C交于不同的两点A、B,
AB
=2
AM
.试探究
|MD|
|MA|
的取值范围.

查看答案和解析>>

同步练习册答案