精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCDABBCAD,∠BAD=∠ABC=90°.

(1)证明:直线BC∥平面PAD

(2)若△PCD的面积为2,求四棱锥PABCD的体积.

【答案】(1) 见解析(2)

【解析】试题分析:(1)第(1)问,转化成线线垂直,转化成证明BC∥AD. (2)第(2)问,先转化△PCD的面积为2得到BC的长度,再利用体积公式求解.

试题解析:(1)证明:在底面ABCD中,因为∠BAD=∠ABC=90°,所以BCAD

BC平面PADAD平面PAD,∴直线BC∥平面PAD.

(2)解:取AD的中点M,连接PMCM,由ABBCADBCAD,∠ABC=90°得四边形ABCM为正方形,则CMAD.

因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCDAD,所以PMADPM⊥底面ABCD.

因为CM底面ABCD,所以PM⊥CM.

设BC=x,则CM=x,CD=x,PM=x,PC=PD=2x.

取CD的中点N,连接PN.

则PN⊥CD,所以PN=x.

因为△PCD的面积为2,所以

解得x=-2(舍去)或x=2.

于是AB=BC=2,AD=4,PM=2.

所以四棱锥PABCD的体积V.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知上的偶函数,当时,.对于结论

1)当时,

2)函数的零点个数可以为

3)若函数在区间上恒为正,则实数的范围是

以上说法正确的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三统考结束后,分别从喜欢数学和不喜欢数学的学生中各随机抽取了10人的成绩,分数都是整数,得到如下茎叶图,但是喜欢数学和不喜欢数学的各缺失了一个数据.若已知不喜欢数学的10人成绩的中位数为75,且已知喜欢数学的10人中所缺失成绩是85分以上,但是不高于喜欢数学的10人的平均分.不喜欢数学和喜欢数学缺失的数据分别是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题方程表示焦点在轴上的椭圆,命题方程表示双曲线.

(1)若命题是真命题,求实数的范围;

(2)若命题“”为真命题,“”是假命题,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB2BC1EDC的中点,F为线段EC上一动点.现将AFD沿AF折起,使平面ABD平面ABC.在平面ABD内过点DDKABK为垂足.设AKt,则t的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,椭圆的离心率为是椭圆的右焦点,直线的斜率为为坐标原点.

(1)求的方程;

(2)设过点的动直线相交于两点,问:是否存在直线,使以为直径的圆经过原点,若存在,求出对应直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品在近30天内每件的销售价格p()与时间t()的函数关系是该商品的日销售量Q()与时间t()的函数关系是Q=-t40(0<t≤30tN)

(1)求这种商品的日销售金额的解析式;

(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在两种设备上加工,生产一件甲产品需用设备2小时, 设备6小时;生产一件乙产品需用设备3小时, 设备1小时. 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )

A. 320千元 B. 360千元 C. 400千元 D. 440千元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产一种机器的固定成本为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元,市场对此产品的年求量为500台,销售的收入函数为(万元)(),其中是产品售出的数量(单位:百台).

1)把利润表示为年产量的函数;

2)年产量是多少时,工厂所得利润最大?

查看答案和解析>>

同步练习册答案