精英家教网 > 高中数学 > 题目详情

已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使得该角的顶点B落在矩形的边AD上,且折痕MN的端点M,N分别位于边AB,BC上,设∠MNB=θ,sinθ=t,MN长度为l.
(1)试将l表示为t的函数l=f(t),并给出这个函数的定义域;
(2)判断这个函数的单调性,并给出证明;
(3)求l的最小值.

解:(1)由题意,MB=lsinθ,AM=l•sinθcos2θ,
∵AB=6cm,∴lsinθ+l•sinθcos2θ=6,
∴l==
∵sinθ=t,∴l=
∵BN=lcosθ=≤12,BM=lsinθ=≤6
∴sin2θ≥,cos2θ≥0
,∴

∴函数的定义域为
(2)函数在上单调递减,在上单调递增,证明如下:
求导数可得,令l′=0可得t=
∴函数在上单调递减,在上单调递增
(3)由(2)可知,当t=时,l取得最小值为
分析:(1)求出AM、MB,利用AB=6cm,可求函数关系式,利用BN≤12,BM≤6,可得函数的定义域;
(2)求导数,利用导数的正负,确定函数的单调性;
(2)由(2)可得函数的极值,极值就是最值,即可求得结论.
点评:本题考查函数模型的构建,考查三角函数知识,考查导数知识的运用,正确确定函数的解析式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使该角的顶点B落在矩形的边AD上,且折痕MN的两端点M、N分别位于边AB、BC上,设∠MNB=θ,MN=l.
(1)试将l表示成θ的函数;
(2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使得该角的顶点B落在矩形的边AD上,且折痕MN的端点M,N分别位于边AB,BC上,设∠MNB=θ,sinθ=t,MN长度为l.
(1)试将l表示为t的函数l=f(t);
(2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使得该角的顶点B落在矩形的左边AD上,且折痕MN的两端点M、N分别位于边AB、BC上,设∠MNB=θ,则θ的取值范围为
[
π
12
π
4
]
[
π
12
π
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使得该角的顶点B落在矩形的边AD上,且折痕MN的端点M,N分别位于边AB,BC上,设∠MNB=θ,sinθ=t,MN长度为l.
(1)试将l表示为t的函数l=f(t),并给出这个函数的定义域;
(2)判断这个函数的单调性,并给出证明;
(3)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形纸片ABCD中,AB=6,AD=12,将举行制品的右下角沿线段MN折叠,使矩形的顶点B落在矩形的边AD上,记该点为E,且折痕MN的两端点M、N分别位于边AB,BC上,设∠MNB=θ,MN=l,△EMN的面积为S,
(1)将l表示成θ的函数,并确定θ的取值范围;
(2)问当θ为何值时,△EMN的面积S取得最小值?并求出这个最小值.

查看答案和解析>>

同步练习册答案